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1. Introduction

A BERNOULLI or for brevity a Beta sequence for the real numbemwhich we will
represent by («) or simply 3, is defined as the infinite sequence :

ﬁ(OZ) :ﬁ:< ﬁk >= 517527537"%
where, G, = [(k+ 1)a] — [ka], k=1,2,3,..., and[z] is the integer part of. (1)

That is 5 is simple the forward difference of the integer part sequence obtained from
multiples of a real number.

Sequences of this type were first studied by Johann Bernoulli 11l (and hence the name
Beta), the astronomer grandson of the famous mathematician Johann Bernoulli I. Although
we are unable to identify the exact problems that stimulated his concern for these sequences,
it probably had something to do with a cogwheel representation of planetary orbits which
resulted in him being forced to calculate the integer parts of large multiples of irrationals.
Without a computer this is very time consuming. However knowing the corresponding Beta
sequence this becomes trivial using the property shown in P1 below.

Our interest in Beta sequences was aroused after reading some unpublished notes of
Douglas Hofstadter [5], which gave a very spirited introduction to these sequences together
with many fascinating examples; in particular they contain a description of the INT function
which is rather cryptically described in his famous boolod8l, Escher, Bach".

Johann IIl observed in 1772 [1], but did not prove, that in such sequences, having
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calculated the first few terms of the above integer parts formula (1), these terms can then
be used to generate a larger number of terms and then this new subsequence can be used to
generate an even larger subsequence and so on. Each time the increase in the number of
terms is itself increasing which allows us to generate the sequence extremely rapidly. We
describe a method for the rapid generation of thesequence in detail in section 4 of this

paper.

The proof arising out of this observation had to await over a century until 1882 when
A. Markov [6] established it using continued fractions (see theorem 3 below). For material
relating to continued fractions the reader is advised to consult any text such as Roberts
[7]. The relationship between characteristics and the three gap theorem is discussed in van
Ravenstein , Winley, and Tognetti [8].

Before examining the properties 8f sequences (section 2) and their associated derived
sequences (section 3), we give some examples ¢f tleequences associated with particular
real numbers.

Examples

@a=m=23.1415

k [1]2]3]4[5[6]7][8]9]10[11]12]13[14]15
[ka] [3]6]9]12]15[18|21|25|28|31|34|37|40|43]| 47
B 13[3[3/3[3[3[4[3[3[3|3[3]3][4]3
(b)a =7 =1618... = V5t

k [1]2]3]4[5[6]7[8]9[10[11]12]13[14]15
[ka] [1[3]4]6[8[9|11|12|14|16|17|19|21|22] 24
B 2122121221221 ]2]|1

(C)a=+v2=14142...

k [1]2]3]4]5|6|7]8]9[10]11]12[13[14]15

ka] [1]2]4]5[7[8|9]11]12|14]|15]16|18|19] 21

B [1]2]1]2f1f1]2l1[1]2]1]2]1]2]1

(d)a =e=2.7182

k [1]2]3]4[5[6]7][8]9]10[11]12]13[14]15
[ka] |[2|5]8]10[13[16|19[21|24|27|29|32|35]|38]| 40
B 133213332 [3[3]2[3[3[3]2]3




(e)a=e1=0.3678...
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2. Properties

In order to simplify the proofs associated with the properties presented here, the reader
is referred to thé\ppendix (where results are referred to as Al, A2 etc.). This appendix is a
list of properties for the bracket functiong|fand{z} (the integer part of and the fractional
part of z respectively).

P1.

Proof:

P2.

Proof:

(@)

k

2B =[(k+1)a] - [a]

i=1

Thus [ka] is easily calculated from the sum of the terms in the Beta sequence.

(0) k
. (zi? @) .

k—o0

(@) This follows immediately from (1).

(b) This follows from (a) and A21.

(@) If a is the rational numben/m then Gy(«) = Brim(a). That is the
sequence is periodic with period.

(b) If we know the sequence fofa} we simply add [a] to each term to
obtain the (3 sequence for .

(©) Br(a) = =Bi(—a).
(a) If « =n/m then
Pr(a) = [(k+1)a] - [ka]
= [(k+ 1)n/m] — [kn/m)]
= n+[(k+1)n/m| —n— [kn/m]
= [n+ (k+ 1)n/m] —[n+ kn/m], from A7
= [(k+m+ 1)n/m] — [(k+m)n/m]
= Brsm(a).



) B =[(k+ a] — [ka] = [(k + 1){a}] — [k{a}] + [o] from AT.

(c) This follows from A11.

Note

From P2(a), we see that tite- sequence for a rational numberis formed by simply
repeating the first: terms of the sequence whete= n/m.

Consequently such sequences are different in character from those associated with irra-
tional values otv and henceforth, we will consider only thoSe sequences for which is
irrational. We emphasise that, for reasons that will become obvious below, we can restrict
ourselves td) < a < 1.

Thus in what follows we can confine ourselves to

B = [(k + D{a}] - [{a}]

We also note thafa'} = « has the simple continued fraction expansion

(0 ) :
a = ;A1,02,03, .. .) = —————1
-
P3. If 0< a <1 theng, takes on only one of the values O or 1.
Proof:
[(k+1)a] = [ka+ ]

{ka} + [ka] + o
= [ka]+ [{ka} + a], from A7.

Hences,, = [yx] wherey,, = {ka} + . Now0 <y, < 2 and sofy, = [yx] = 0 or 1.

We see that, = 0 means thafka} + o < 1 and thats, = 1 means thafka} + o > 1.
Consequently we see, from P2 (b), thiatakes on only one of the valugs| or [a] + 1. We
note that this is true for any real value @f

P4. {yr} = {{ka} + a} = {(k+ 1)a}



Proof:

{(k+1)a} = {ka+a}
= {[ka] + {ka} + a}
{{ka} + a}, from A8.

P5. €)) If 0< o <1/2 andf, = 1 thenS, 1 = 0.
(b) If1/2< o <1l and g, = 0then g, = 1.
Proof:

{(k+1)a} = yr— [p], from P4
= yr — Ok, from P3

= {k:a} + o — ﬁk
Hence
1 = {(k+1Da}+a
= {k:a} + 20 — ﬁk
€)) If0 < o < 1/2, then0 < 2o < 1 and with3, = 1 we haved < y;1 =

{ka} +2a — 1 and0 < {ka} < 1, which establishes that 1 = [yx+1] = 0.

(b) If 1> a>1/2,then2 > 2a > 1 and with3, = 0, we have2 > y;, =
{ka} + 2a > 1, which establishes that .1 = [yx+1] = 1.

From P5 (a) it is seen that if < o« < 1/2 then units can occur only as isolated singles
separating groups of zeros. Similarly from P5 (b) we see thatif > 1/2 then zeros can
occur only as isolated singles separating groups of units. From now on we refer to the integer
that occurs singly as the separator. The other term will be referred to as the string term.

Thus the string term is equal to the nearest integer, toamely[« + 1/2] (see A19). If
this is[a] then0 < {a} < 1/2 and the separator [&] + 1. Otherwise the string term is
[a] + 1and1/2 < {a} < 1 and the separator fif].

This is consistent with the mean behaviour of the sequence. For example,Owhen
a < 1/2 we would expect more zeros than units, that is strings of zeros separated by single
occurrences of units.

P6. If v =1—aand0 < a < 1, thenj(y) is obtained from3(«) by replacing the
zeros by units and the units by zeros.



Proof:

Pr(a) = [(k+1)a] —[ka]
= [+ DA =)= [k1 =)
= k+1+[—(k+1)y] —k—[—kn], fromA7
= 1+ [=(k+ 1] = [-k]
= 1+ (=1 [(k+10)) — [-1 - [k]), from AL
1= Br(7)-

P7. If 0 < a < 1then the number of terms between ffib and(k + 1)th separators in
B(a) is pr+1 — pr — 1 where

= [k/a], O0<a<l1/2
k/(1—a)], 1/2<a<1.

Proof: If0 < o < 1/2 then the separators j#(«) are units and there are integeysand
pr+1 such thara < k < (pp + 1) andapgis < k+ 1 < (pgs1 + 1)a, which
means thap, = [k/a].

Now [(px + 1)a] > k > [pya] and soj,, > 0. Hence from P3 we have,, =1
and similarlyg,, ., = 1.

Since
Pry1—1
> Bil@) = [pes1a] — [(pr + 1)e]
i1=pr+1
we see from A23 and P3 that
ﬁpk-l-l(a) - ﬁpk-i-?(a) == ﬁpk+1—1(a) =0

Thus the number of terms between fith and(k + 1)th separators ir¥(«a) is
Pr1 —pr — 1= [(k+1)/a] = [k/a] = 1.
If 1/2 <a < 1then0 <1—a =+ < 1/2andfrom P6 we know that the number

of terms between theth and(k + 1)th separators i¥(«) is the same as ifg(y).
Hence the number of terms between title and(% + 1)th separators if(«) is

(k4 1)/3] = [k/7] = 1 = [(k+ 1)/ = a)] - [k/(1 - )] — L.

We note that P7, withy replaced by{«}, is true for any irrational number.
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P8. We note thaGraham, Knuth and Patashnik [4] refer to the sequengk/a|, k =
1,2,...as Spefy) and obtain several of the properties we have described. Addi-
tionally they show that the number of terms in Sgecthat are less than equal to
nis|(n+1)/al.

3. Derived Sequences

We now form a new sequeng¥(a) (the derived sequence) by making each new term
equal to the number of terms in a run of the terms between two consecutive separators in the
sequence ().

Consider for example3(e™') = 0,1,0,0,1,0,0,1,0,1,0,0,1,.... We note that~' is
between 0 and 1 with O the nearest integer. Hence as is usual for stiskguence there
are runs of 0’s between units as separators starting with the first unit. We note that there are
two terms in this sequence between the first and second separators and there are two terms
between the second and third separators with one term between the next consecutive pair of
separators and so on. In this way the derived sequence is found to be

Be ) =221,2221,22,...

From inspection it appears that this derived sequence may be apbtlsequence with
1 as the separator and 2 as the string term. We now show that this is indeed the case and that
the result holds in general.

Theorem 1

For any irrational numbex, f'(a) = 5(d)

where o’ =z, {a} < 1/2,

=1/z, {a} > 1/2,
and z =1/{a}—1.

Proof: If we agree to count the number of terms between consecutive separatigrs) in
beginning with the first occurrence of a separatof(n), then withp, as defined in P7, we
see that the kth term in the derived sequeft¢e ) is, from P7,

Br(a) = pryr —pe — 1.
If 0 < {a} < 1/2 this becomes

Bila) = [(k+1)/{e}] = [F{a}] = (k+1) -k
= [(k+1)(1/{a} - 1)] - [k(1/{a} — 1), from AT7.



Thus 5, («) is the kth term of theg - sequence fot /(1/{a} — 1). Alternatively if
1/2 < {a} < 1then,

Bl) = [(k+1)A/1={a}) =] = [k(1/(0 —{a}) = 1)]
= [(k+ DA/} = D)) = [k(1/(1/{a} = D)].

Thus(, («) is thekth term of thes - sequence fot /(1/{a} — 1).
Corollary 1

The number of terms in the strings between two consecutive separatofs iseguence
must be one of only two valugs’] or [a/] + 1.

Proof: This follows immediately from Theorem 1 and the comments following P5.
Corollary 2

a) Ifo<{a} <{aw}<1/2 then o) >a} > 1.

a) If1/2<{a} <{a} <1 then o) >} > 1.
Proof: The proof of both parts follows directly from Theorem 1.

If we grapha’ against{«}, then the properties in Corollary 2 are seen clearly from the
graph and we note that the graph is symmetrical about the tipe= 1/2.

Derived Sequences and Continued Fractions

We now consider the relationship between the terms in the derived sequence and the terms
in the simple continued fraction expansioncof

Supposda} < 1/2where{a} has thesimple continued fractionexpansioq 0; ay, as, as, . . .}.
Then from the theory of continued fractions and Theorem 1 we have,

o =z=1/{a}—1={a1 — 1;a9,0a3,...} >1 and a; > 2.
Hence, wheqd a} < 1/2 the terms in the derived sequengéx) must take on the values
[1/{a} — 1] or[1/{a}], thatisa; — 1 or a;.
For example, i2/5 < {a} < 1/2thenl < o' < 3/2 and so{c'} < 1/2. Specif-

ically, {+/2} lies in the interval (0.4, 0.5) anfl/2} has the continued fraction expansion
{0;2,2,2,...}. Consequently’ = 1/{+/2} — 1 = /2 has the continued fraction expansion
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{1;2,2,2,...} and the terms in the derived sequence take on the values 1 and 2. Itis seen that
the continued fraction expansion faf amounts to a left shift by one term in the continued
fraction expansion fox/2 and a change in the first occurrence of a 2 to a 1. We also note
that in this example the derived sequence is identical tptheequence fot/2 (see section

1, example (c)).

On the other handa} > 1/2 implies thata; = 1 and sincel < 1/{a} < 2 we see that
z=1/{a} —1=1{0;a2,a3,...} <1consequentlyy =1/z = {as;as,...} > 1and thus
the terms in the derived sequence take on the valyesa, + 1.

From the above for any we can inspect the terms of its continued fraction expansion
{ap; a1, as, ...} and determine which terms will be in the derived sequence fs follows.

We ignore the initial termag. If a; > 2 then the derived sequence will take on the values
a1 — 1 ora;. On the other hand, ii; = 1 the terms in the derived sequence will be either
as + 1 0ras.

From this it is seen that a derived sequence can never have zero as a term. Consequently
from P3 we see that if, = 0 in the continued fraction expansion afthen3(«) and the
derived sequencé («) can never be identical.

Self Derived 5 - Sequences

If the 3 - sequence faw is identical to its derived sequengé«) we say that the sequence
B(«) is self derived.

From above we have seen thi#t/2) is self derived.
Theorem 2

B(«) is self derived if and only ifp = o/ and either

n—1+,4/(n+1)2+4

a={nn+1ln+1, .. .} =

2 )
in which case{a} < 1/2or
Vn? 44
a={n;1,n,1,n,1,...} = W,

in which cas€{a} > 1/2, and n is the integer part of.

Proof: (a) If3(«) is self derived{a} < 1/2 anda = {ap; a1, as, as . ..} then from Theorem
1,
o =1/{a} —1={a; — 1;a9,a3,...},a; > 2 and a =<'

Consequently, matching terms in the continued fraction expansionsaoid o’ gives
ag =n,a; = ay = az = ... =n + 1 wheren is a postitive integer.
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Similarly if {a} > 1/2thena’ = {as; a3, a4, ...} anda; = 1. So matching terms in the
continued fraction expansions gives

g = a9 = Qg4 = ... =N,
a=a3=as=...=1.
) Ifa={n;n+1,n+1,...} and{a} < 1/2 then from Theorem 1

o=1/{a}—-1={n;n+1,n+1,...} =« and thus,

Similarly, if « = {n;1,n,1,...} and{a} > 1/2 then from Theorem 1
o' ={n;1,n,1,...} =« and again,f(a) = 8(a') = §'(«a).

We note that although the terms in the derived sequence fine independent of the
value ofay = [o] we do need to know the value @f to characterise a self derived sequence.

Examples ot which have self derived - sequences are:

a) n=lLa=d =v2=1{1:2,2,2,..}, {a} =v2-1<1/2
n=2a=a=(1++13)/2=1{2:3,3,3,...}, {a} = (V13 -3)/2 < 1/2
n=3a=ao=1+v5=1{3;4,44,...}, {a} =v5-2<1/2
n=4a=ao =3+ \/_)/2_{4555,...},{@}:(\/%—5)/2

b) n=lLa=d=(5+1)/2={1;1,1,1,...}, {a} = (V5-1)/2 > 1/2
n=2a=ad=3+1)=1{21,2,1,..}, {a} = (/3-1) > 1/2
n=3a=ad=(21+3)/2=1{3;1,3,1,...}, {a} = (v/21 - 3)/2
n=4a=a =2+2V2=1{41,4,1,..}, {a} =2vV2-2>1/2

Corollary 3

If 5(ay) and(az) are both self derived then,

a) )] > [ah] > 1 and 0 < {o}} < {a} < 1/2 whenever
0<{an} <{a} <1/2.

b) [ah] > o] > 1 and 1/2 < {o)} < {a4} <1 whenever
1/2 <{a1} <{an} < 1L
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Proof: The proof of both parts follows from Corollary 2 and the fact that

/ /
a1 :&1,@2 :C(Q

From Theorem 2 and the graph @f against{«} it is seen that values af for which
B(«) is self derived are obtained from the graph by reading the valuéaifthe appropriate
point of intersection of the graph and straight lines of the farm- n + {a} wheren is a
positive integer.

4. Characteristics and the Rapid Generation of the3-Sequence

Consider thej - sequence withh = 7 — 1 = 0.618 . . . (see Section 1, example (f)) which
is1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,...

It would be convenient to have a representation ofithesequence which allowed us to
indicate the number of terms in each string.

To do this we use a method based on Christoffel [2]. Firstly replace each zeraray
each unit byl. Hence, we represent the sequencédifcdcd?cd?cd . . . This we will call the
characteristic ofv. In general, the characteristic is obtained from-asequence by replacing
a string of units of lengtlt by d* or a string of zeros of lengthby ¢’.

In a similar way, we see that if = v2 — 1 = {0;2,2,2,...} then from Section 1,
example (h) the characteristicdgcdc?dedc?dedc . . .

From these examples we observe that if we start withthen we can obtain a longer
portion of the characteristic and consequently thesequence by using information from
the continued fraction expansion of

The following method is due to Markov [6] and is described in Venkov [9]. An alternative
elegant procedure has been developed by Fraenkel et.al. [3].

In general to form the characteristic we form the following subsequences,

co=c, ¢, =c'd, wherea = {0;a,as,as,...}.

Then we forme;, 1 = (¢;)%*+ te; ¢ for 1 > 1.
Finally by joining (concatenating) our subsequences we form the characteugtic, . . ..

This result will be formally proved in Theorem 3 and we now illustrate the procedure for,

a) a=7-1=0618...={0:1,1,1,...}.
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_ _ 0 _ _ 0 _ o
co=c, g =cd=d, cj1 = (¢j)cjo1c; = cjoicj; j > 1.

Thuscy = cpe1 = cd, c3 = c1co = ded, ¢y = coc3 = cdded, and it is seen thatcacs . . .
is indeed the characteristic.

b) a=+v2-1=1{0;2,2,2,...}.

Co=¢C, C1 = Cd, Cj+1 = CjCj—1Cy; j > 1.

Thusc, = cicpe; = cdecd, c3 = cacico = cdecdededecd, and again the characteristic is
generated as before.

We note that in both exampless of the form{0; n, n, n, ...} and in these circumstances
a; = n for j > 1in the general procedure described above.

We now proceed to develop Theorem 3.

Supposer = {ag; a1, as, . . .} then we define foj > 0,
ti ={aj; a0, 0500, .} = a; +{05a541, 0540, ..}
= aj —+ 1/tj+1
and  f; = 1/tj41 = {t;} ={0i 0541, 0542, .. .} = 1; — a;.

In particular,

tO = o, fOZ{a}a
tl = 1/{&}:{al;ag,ag,...}:a1+1/t2:a1+f1,
f1 = 1/t2 = tl — a; = {tl} = {1/{0[}} = {O, ag, as, . . }

If 0 < o < 1thena ={0;a1,aq,...},t1 =1/a and f; = {t;} = {1/a}.
Lemma 1.

If 0 < o < 1andmy = [k/a], wherek is a positive integer, then
a)amy = a(kay + [kfi]) = k — ofkf1}

b) [amy] =k —1, [(mp+1)a] =k

13



C) Myy1 — My = a1 + Br(f1)
d)ﬁmk(a) = Bmk+1(C() =1 s 6]'(04) = Oforj = My + 1,mk —|—2, ey Meyr1 — 1.
Proof: (a) From our definitions,

mp = [k’tl] = [k’&l + k?fl] = k:al + [k?fl] = k:al + k’fl — {k?fl}
ktv = {kfi} = k/oo—{kfi}

(b) Since0 < {kf1} < 1 we see from (a) that — 1 < am; < k and thus
l[amyg] =k — 1.

Now a(my + 1) = a + amy, = k+ (1 — {kf1}), from (a), and thus
k< a(mg+1) < k+1,qgiving[a(my + 1) = k.

(C) Mgy — M = (/f + 1)&1 - [(/{ + 1)f1] — kay — [kfl], from (a),
= ar+ B(f1)-

Since0 < {a} < 1 for any irrationala we see that the results in Lemma 1 hold for any
irrational o with « replaced by{«}. This also follows from A23.

(d) G, (@) = [(mg + 1)a] — [ma] =k — (k— 1) =1, from (b).

Brngir (@) = [(mgy1 + 1)a] — [my10] = (k+1) — k=1, from (b).

Also
mp41—1
Z B;(k) = [mgr1a] — [(my + 1)a] = 0, from (b),
Jj=mp+1
and from P3 we havg;(«) =0for j =my +1,m; +2,...,myq — 1.
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Theorem 3.

The characteristic af, K («; ¢, d), is obtained from thg - sequence by firstly replacing
the term[a] by c and[a] + 1 by d.

If we next define the subsequence:;, > by

Co=2¢C C1 = (C)alild, Cjt1 = (Cj)aHlile,le, forj >1

thenK (a; ¢, d) =< ¢ >= c1cac3.. . ..
Proof: We will prove the theorem fdr < a < 1.

In the 3 sequence we select the string of termys, + 1, 3, +2, ..., B,,, Which from
Lemma 1 (c) will become™+1="~1q in K(a; ¢, d).

For the particular case wheke= 1, m;, = a; and so beginning with the term,, ., («)
in the 3 sequence we see that the corresponding string in the characteristic is,

(c)m2—m=b g (c)yms=m2—l g (¢)ymammath g
Sincefa;a] = 0 and[(a; + 1)a] = 1 from Lemma 1(b) we see that the string of terms
Bi(a), Bala), ..., Ba, () inthes - sequence becomes the strinyf* ~'d in the characteristic.

Hence from Lemma 1 (c) we have

K(a;e,d) = ()71 d (¢) D) g ()14 g
whereh(k) = Bi(f1)-

Now sincel < f; < 1the - sequence fof; will consist of only zeros and units. Thus,
if K(f1;c,d)isthe characteristic of; then the characteristic of can be obtained from it by
replacing each in K(f1;¢,d) by ¢; = (¢)*~'d and eachl by d; = (¢)*d and adjoining:;
on the left.

Thus
K(o;c,d) = ei K(f1;¢1,dh)

where,
c1 = ()" 'd and d; = (¢)™d.

Similarly, we can show that

K(fl; C1, d1) = C2K(f2§027d2)
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where,
Cy = (Cl)agildl , dy = (Cl)agdl, f2 = 1/f1 — a2 and thus

K(OZ, C, d) = ClCQK(fQ; Co, dz)
Proceeding in this way we have,
K(ase,d) = cieo...¢;K(f;;¢5,d;)
where, forj > 0,

Ch = C, do = d,
) _ Nej+1—1 g
ciy1 = (¢)” dj,

dipr = (¢;)""d;.

We see that/;;; = c;c;;; and hence we have

co=c, = ()", i = (c;)"" i, for > 1
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APPENDIX
RELATIONSHIPS FOR THE BRACKET FUNCTIONS { } and [ |
We now consider some properties of the bracket functions of division nafg¢indz].

In what follows unless otherwise statedndy are realn is any integer
(...—2,-1,0,1,2...) k is a positive intege(1, 2,3, ...) and f is a real fraction such that
0 < f < 1. Also |z| is as usual the absolute value function definetkas- x, if
z>0and —xif x < 0.

DEFINITIONS
Integer Functiorix]

We defing[z] to be the largest integer not exceedingHence

[z] = maxintegem :n <z

It follows that[7] = 3 but that|—7] = —4. Thus for non negative rea]s| is the same as
the truncation of: (that isx without the decimal fraction).

Fractional Part Functiofi}.

We define
{2} =2~ [a]

As we will show below (A 12), {—7} =1— {n} = .8584...

Note 1: If we consider a circle of unit circumference (not a unit diameter as is
usual with complex algebra) then we can visualise {7} as wrapping a string of length
7 clockwise around our circle from some point, which we call the origin, and ignoring
full loops (of which there will be [r]): the length of the part of the string remaining is

{r}.

For —m, we wrap our string anti clockwise. Again we ignore loops of which there
will be [x]. But in this case —[—n| = one more than the number of loops. And we
emphasise that {—n} is not equal to the length of the part of the string remaining but
rather it is equal to the length of the arc of the circle not covered by this string. In
each case the fractional part is equal to the anti-clockwise distance from the end of the
string to the origin.

Note 2: These functions come from the division algorithm

y=1r+r, where(0<r<uz
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1, of course, is always an integer. If y and x are integers then r, the remainder, is also
an integer. If both are rational then so is . If at least one of x or y is irrational then
so is r unless 7 is zero. It follows that y/x = i+ r/x , and hence, for positive x and
y, i = [y/z] and r/x = {y/x}. Thus for x positive, it follows that ¢ is identical to the
integer part.

PROPOSITIONS

Al. [n] = n Thus in particular [-9] = —9

A2, r—1<[z] <.
The right inequality follows from the definition. The left inequality follows
from the fact that there can be only one integer between x and x — 1 (this

must be so otherwise this range would be greater than unity). Hence
[19.6] = 19 lies between 18.6 and 19.6.

A3. [z] <x<[z]+1
This follows by rearranging A2.
Hence 19.6 lies between 18 and 19.

A4, [n+ f] =n.
This follows from Al and because n <n+ f <n+1
Thus [19 + .6] = 19

AS5. {n+fi=1r
This follows immediately from the definition of {2} and A4.
Thus {19+ .6} = .6

A6. {{z}} = {z}
Thus {{19.6}} = {19.6}

A7. n+ x| =n+ [z]
As LHS = [n + [z] + {«}] = RHS, from A4
Hence [7 + 19.6] = 7 + [19.6]

A8. {n + x} = {z}. This follows immediately from A7.
Hence {7+ 19.6} = {19.6} and {—7 + 19.6} = .6. In particular
{-7T+.6}={-64} =6

A9. [ly] + 2] = [y + [2] = [ [«] + ], from A7
hence [ [19.6] + 3.5] = [19.6] + [3.5] = [ [19.6] + 3.5]
A10. [—]x|]=—[]z]]—1, where z is not integer.
We note that [— | n | | = —[n] follows from Al.

Now if [ | x | | = k, then from A3, k <| z |< k + 1.
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All.

Al2.

Al3.

Al4.

Al5.

Al6.

Hence —k — 1 < — | z |< —k, from which the result follows.

For example [7] = 3,[—n] = —4. From this we immediately have

[n] + [-n] = 0 and

[z] + [-z] = —1 ,where x is not integer.

Thus [-x] =-1-[x] =- (1 +4[x] ) hence [-19.6] = —(1 + [19.6]) = —20.

{z} + {—x} =1, where x is not an integer.

Follows by substituting in A11.

Hence {—z} =1— {2z} and thus {—7} =1— {7} = .8584...

Another way of looking at this is that {—k+ f} ={-(k—=1)—(1—-f)} = f
Hence {—19.6} = {—20 + .4} = .4 , which agrees with A8 .

2] + [yl < [v+y] < [o] + [y] +1
From A9 and A3, LHS = [ [z] +y] < [zt +y| <z +y < [z] + [y] + 2 = RHS
Thus [19.6] + [3.5] < [19.6 + 3.5] < [19.6] + [3.5] + 1

[z/k] = number of positive integral multiples of k£ not exceeding x, where
x> 0.
this follows directly from the division algorithm.

kfl+[k(1—f)] = k—1, kf not an integer
= k, kf an integer
where 0 < f <1

From A7 and All.

kA=) = k+[-kf]
= k—1—[kf], In the case when kf is not integer
= k — [kf], In the case when kf is not integer

{kf}+{k(1—f)} = 1, kf not an integer
= 0, kf an integer
where 0 < f <1

Follows as {k(1 — f)} = {—kf} , from A8 and then use A12.
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Al7.

Al18.

A19.

A20.

A20a.

A21.

A22.

(n+1)/k<[n/k]+1
n = [n/k]k +r , where r is an integer and 0 <r < k — 1
Hence (n+1)/k = [n/k]+ (r +1)/k < [n/k] + 1.

[ [2]/k] = [z/k].

Let ¢ = LHS = [ [z]|/k] then using A2, A3 and A17 we have
i <lzl/k<z/k<([z]+1)/k<i+1

That is ¢ < z/k < i+ 1, and the result follows from A3.

The nearest integer to z is k = [z + 1/2].

this is equivalent to showing that

| [z +1/2] —z| < 1/2.

This follows from A2 since

—1/2=(x+1/2)—(z+1) <[z +1/2| —a < (x+1/2) —x=1/2

An alternative proof is the following: Firstly consider the case where z is
nearer to [z},

then « = [z] + y, where y < 1/2. In this case

[z] <z +1/2=[z] +y+1/2 < [z] + 1 and hence k = [z] as required.
Consider now the other possibility, that is z is nearer to [z] + 1. In this case
r = [x] + 1 — y and it follows that [z] +2 > 2+ 1/2 > [2] + 1 and thus
k = [z] + 1, thus completing our proof.

An immediate corollary of A19 is that if the integer k = x £+ y, where z,y
are real such that y < 1/2 then k = [z + 1/2].

Thus for example, if 7 is the golden section (1.618...) we can obtain the
Fibonacci numbers directly from

= [m*/V5+1/2]

This is less cumbersome than calculating the second term in the Binet ex-
pression V5 F, = 7F — (—=1/7)*

—[—x] is the smallest integer not less than .

Now —x — 1 < [—z] < —z, from which we obtain the result by multiplying
through by —1.

Thus —[—19.6] = 20 is the smallest integer greater than 19.

As k increases without bound

limfk — oo]/k = x.

Now by definition kx — 1 < [kz] < kz. Hence
r —1/k < [kz]/k < z, and the result follows.
Thus [1000 % 1.618] /1000 is about 1.618.

a) (k72| = [r[k7] |+ 1= [kT] + K
The equality of the first and third terms follows because 72 = 7 + 1
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Let f = {kr} = k7 — [kT]
But 7'2 =1 + 7 and hence
72 — [ks?] = . That s {kr?} = {kr} = .

Andas 1/t = 7-1,

_f/T = f(]'_T)v
= (kr* = [k7?]) = (k72 = 7[kT] ),
rlkt] — [k

The equality of the first and second terms follows as 0 < f <1 < 7.
Thus with k = 6, we have [7[67] | = 14 and [67%] = 15.

b)[rlk7] | = [k7] + k — 1.

Follows trivially from a).

c) {rlkr]} =1 —{kr}(r —1).

{rlkrl} = 7lkr] = [rlk7] ]
= 71lk7] — ([k7] + k — 1), from a)
= [kr)(t—=1)—k+1,
= (kr—[kT])(T—=1) —k+1,
k(r? =7 = D]+ {kr}(r - 1),

and the result follows as the first term in brackets is zero.

A23.

[[k/{a}{a}] = k-1, if kis not a multiple of{a}
=k, if k is a multiple of{a}

To show this we consider [k/{a}] = k/{a} — {k/{a}}

and thus [k/{a}]{a} =k — {k/{a}}{a}.

From this it is seen why we insisted that we use only a fractional part (or a
value less than 1) as this ensures that the final product term must be less

than unity. By taking the truncation the result follows.
Hence [.3[15/.3] | = 15 but [.31[15/.31]] = 14.

A24. {{ka} — {j}} = {(k =)z}

From A8, LHS = {kz — [kz] — jx + [jz]} = {kxz — jx} = RHS
Thus {{150 % 19.6} — {50 x 19.6}} = {50 % 19.6}.
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A25.

A26.

A26a.

A26Dh.

{F{a}} = {ka}
The result follows from A8 and k{x} = kx — k[z]. Thus
{100{19.6}} = {100 * 19.6}

Integer parts play an important role in the mathematics associated with the
pigeon hole principle which can be stated as -

If 7 + 1 pigeons are placed into j holes then at least one hole will contain at
least two pigeons. Thus if we try to place 11 pigeons into 10 holes then at
least one hole must have two or more pigeons in it.

A generalisation of this is the following.

If k pigeons are placed into j holes than at least one hole will contain at
least h + 1 pigeons where h = [(k — 1) /4]

To show this, consider what happens if the largest number of pigeons in a
hole is h. Then it follows that the total number of pigeons cannot exceed jh.
But from A2, [(k—1)/j] < (k—1)/j and thus kh < k— 1, hence it would be
impossible for the total number of pigeons to add up to k& and thus at least
one hole must contain more pigeons than h.

Thus if we try to place k = 23 pigeons into j = 10 holes we have h =
[22/10] = 2 and thus at least one hole must have at least 3 pigeons. To
minimise the number of pigeons per hole we place 2 pigeons into each of the
10 holes. This leaves 3 over which forces at least one hole to have more than
2.

Note: With k£ = j 4+ 1 we of course obtain A26a and with k = ij + 1 we are
sure that there will be at least ¢ + 1 pigeons in a hole.

Furthermore if we have a total of j2 4+ 1 pigeons then there must be a least
j + 1 pigeons in a hole. And this result enables us to prove the following
nice result (Erdos 1935).

Given a sequence of exactly j2 + 1 distinct integers either there is an in-
creasing subsequence of j + 1 terms or a decreasing subsequence of j + 1
terms.
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