
BERNOULLI (BETA) and INTEGER PART
SEQUENCES

Rod Nillsen,Keith Tognetti and Graham Winley*

School of Mathematics and Applied Statistics,
(*Department of Business Systems)

University of Wollongong NSW 2522 Australia

May 26, 1999

1. Introduction

A BERNOULLI or for brevity a Beta sequence for the real numberα, which we will
represent byβ(α) or simplyβ, is defined as the infinite sequence :

β(α) = β =< βk >= β1, β2, β3, . . . ,

where, βk = [(k + 1)α]− [kα], k = 1, 2, 3, . . . , and[x] is the integer part ofx. (1)

That isβ is simple the forward difference of the integer part sequence obtained from
multiples of a real number.

Sequences of this type were first studied by Johann Bernoulli III (and hence the name
Beta), the astronomer grandson of the famous mathematician Johann Bernoulli I. Although
we are unable to identify the exact problems that stimulated his concern for these sequences,
it probably had something to do with a cogwheel representation of planetary orbits which
resulted in him being forced to calculate the integer parts of large multiples of irrationals.
Without a computer this is very time consuming. However knowing the corresponding Beta
sequence this becomes trivial using the property shown in P1 below.

Our interest in Beta sequences was aroused after reading some unpublished notes of
Douglas Hofstadter [5], which gave a very spirited introduction to these sequences together
with many fascinating examples; in particular they contain a description of the INT function
which is rather cryptically described in his famous book “Gödel, Escher, Bach".

Johann III observed in 1772 [1], but did not prove, that in such sequences, having
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calculated the first few terms of the above integer parts formula (1), these terms can then
be used to generate a larger number of terms and then this new subsequence can be used to
generate an even larger subsequence and so on. Each time the increase in the number of
terms is itself increasing which allows us to generate the sequence extremely rapidly. We
describe a method for the rapid generation of theβ - sequence in detail in section 4 of this
paper.

The proof arising out of this observation had to await over a century until 1882 when
A. Markov [6] established it using continued fractions (see theorem 3 below). For material
relating to continued fractions the reader is advised to consult any text such as Roberts
[7]. The relationship between characteristics and the three gap theorem is discussed in van
Ravenstein , Winley, and Tognetti [8].

Before examining the properties ofβ - sequences (section 2) and their associated derived
sequences (section 3), we give some examples of theβ - sequences associated with particular
real numbers.

Examples

(a)α = π = 3.1415 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 3 6 9 12 15 18 21 25 28 31 34 37 40 43 47
βk 3 3 3 3 3 3 4 3 3 3 3 3 3 4 3

(b) α = τ = 1.618 . . . =
√

5+1
2

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[kα] 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24
βk 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1

(c) α =
√

2 = 1.4142 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 1 2 4 5 7 8 9 11 12 14 15 16 18 19 21
βk 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1

(d) α = e = 2.7182 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 2 5 8 10 13 16 19 21 24 27 29 32 35 38 40
βk 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3
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(e)α = e−1 = 0.3678 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5
βk 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0

(f) α = 0.618 . . . = 1
τ

= τ − 1

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[kα] 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9
βk 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0

(g) α = 0.3819 . . . = 1
τ2 = 1− 1

τ

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[kα] 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5
βk 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1

(h) α =
√

2− 1 = 0.4142 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6
βk 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

(i) α = 1− (
√

2− 1) = 2−√2 = 0.5857 . . .
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[kα] 0 1 1 2 2 3 4 4 5 5 6 7 7 8 8
βk 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1
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2. Properties

In order to simplify the proofs associated with the properties presented here, the reader
is referred to theAppendix (where results are referred to as A1, A2 etc.). This appendix is a
list of properties for the bracket functions [x] and{x} (the integer part ofx and the fractional
part ofx respectively).

P1. (a)
k∑

i=1

βi = [(k + 1)α]− [α]

Thus [kα] is easily calculated from the sum of the terms in the Beta sequence.

(b)

lim
k→∞

(∑k
i=1 βi

k

)
= α

Proof: (a) This follows immediately from (1).

(b) This follows from (a) and A21.

P2. (a) If α is the rational numbern/m then βk(α) = βk+m(α). That is the
sequence is periodic with periodm.

(b) If we know theβ sequence for{α} we simply add [α] to each term to
obtain the β sequence for α.

(c) βk(α) = −βk(−α).

Proof: (a) If α = n/m then

βk(α) = [(k + 1)α]− [kα]

= [(k + 1)n/m]− [kn/m]

= n + [(k + 1)n/m]− n− [kn/m]

= [n + (k + 1)n/m]− [n + kn/m], from A7

= [(k + m + 1)n/m]− [(k + m)n/m]

= βk+m(α).

4



(b) βk = [(k + 1)α]− [kα] = [(k + 1){α}]− [k{α}] + [α] from A7.

(c) This follows from A11.

Note

From P2(a), we see that theβ - sequence for a rational numberα is formed by simply
repeating the firstm terms of the sequence whereα = n/m.

Consequently such sequences are different in character from those associated with irra-
tional values ofα and henceforth, we will consider only thoseβ - sequences for whichα is
irrational. We emphasise that, for reasons that will become obvious below, we can restrict
ourselves to0 < α < 1.

Thus in what follows we can confine ourselves to

βk = [(k + 1){α}]− [k{α}]

We also note that{α} = α has the simple continued fraction expansion

α = (0; a1, a2, a3, . . .) =
1

a1 + 1
a2+ 1

a3+...

.

P3. If 0< α <1 thenβk takes on only one of the values 0 or 1.

Proof:

[(k + 1)α] = [kα + α]

= [{kα}+ [kα] + α]

= [kα] + [{kα}+ α], from A7.

Henceβk = [yk] whereyk = {kα}+ α. Now 0 ≤ yk < 2 and soβk = [yk] = 0 or 1.

We see thatβk = 0 means that{kα}+ α < 1 and thatβk = 1 means that{kα}+ α ≥ 1.
Consequently we see, from P2 (b), thatβk takes on only one of the values[α] or [α] + 1. We
note that this is true for any real value ofα.

P4. {yk} = {{kα}+ α} = {(k + 1)α}
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Proof:

{(k + 1)α} = {kα + α}
= {[kα] + {kα}+ α}
= {{kα}+ α}, from A8.

P5. (a) If 0< α <1/2 andβk = 1 thenβk+1 = 0.

(b) If 1/2< α <1 andβk = 0 then βk+1 = 1.

Proof:

{(k + 1)α} = yk − [yk], from P4

= yk − βk, from P3

= {kα}+ α− βk.

Hence

yk+1 = {(k + 1)α}+ α

= {kα}+ 2α− βk.

(a) If 0 < α < 1/2, then0 < 2α < 1 and withβk = 1 we have0 < yk+1 =
{kα}+ 2α− 1 and0 < {kα} < 1, which establishes that,βk+1 = [yk+1] = 0.

(b) If 1 > α > 1/2, then2 > 2α > 1 and withβk = 0, we have2 > yk+1 =
{kα}+ 2α > 1, which establishes that,βk+1 = [yk+1] = 1.

From P5 (a) it is seen that if0 < α < 1/2 then units can occur only as isolated singles
separating groups of zeros. Similarly from P5 (b) we see that if1 > α > 1/2 then zeros can
occur only as isolated singles separating groups of units. From now on we refer to the integer
that occurs singly as the separator. The other term will be referred to as the string term.

Thus the string term is equal to the nearest integer toα, namely[α + 1/2] (see A19). If
this is [α] then0 < {α} < 1/2 and the separator is[α] + 1. Otherwise the string term is
[α] + 1 and1/2 < {α} < 1 and the separator if[α].

This is consistent with the mean behaviour of the sequence. For example, when0 <
α < 1/2 we would expect more zeros than units, that is strings of zeros separated by single
occurrences of units.

P6. If γ = 1 − α and0 < α < 1, thenβ(γ) is obtained fromβ(α) by replacing the
zeros by units and the units by zeros.
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Proof:

βk(α) = [(k + 1)α]− [kα]

= [(k + 1)(1− γ)]− [k(1− γ)]

= k + 1 + [−(k + 1)γ]− k − [−kγ], from A7

= 1 + [−(k + 1)γ]− [−kγ]

= 1 + (−1− [(k + 1)γ])− [−1− [kγ]), from A11

= 1− βk(γ).

P7. If 0 < α < 1 then the number of terms between thekth and(k + 1)th separators in
β(α) is pk+1 − pk − 1 where

pk = [k/α], 0 < α < 1/2,

[k/(1− α)], 1/2 < α < 1.

Proof: If 0 < α < 1/2 then the separators inβ(α) are units and there are integerspk and
pk+1 such thatpkα < k < (pk + 1)α andαpk+1 < k + 1 < (pk+1 + 1)α, which
means thatpk = [k/α].

Now [(pk + 1)α] ≥ k > [pkα] and soβpk
> 0. Hence from P3 we haveβpk

= 1
and similarlyβpk+1

= 1.

Since
pk+1−1∑
i=pk+1

βi(α) = [pk+1α]− [(pk + 1)α]

we see from A23 and P3 that

βpk+1(α) = βpk+2(α) = . . . = βpk+1−1(α) = 0

Thus the number of terms between thekth and(k + 1)th separators inβ(α) is

pk+1 − pk − 1 = [(k + 1)/α]− [k/α]− 1.

If 1/2 < α < 1 then0 < 1− α = γ < 1/2 and from P6 we know that the number
of terms between thekth and(k + 1)th separators inβ(α) is the same as inβ(γ).
Hence the number of terms between thekth and(k + 1)th separators inβ(α) is

[(k + 1)/γ]− [k/γ]− 1 = [(k + 1)/(1− α)]− [k/(1− α)]− 1.

We note that P7, withα replaced by{α}, is true for any irrational numberα.
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P8. We note thatGraham, Knuth and Patashnik [4] refer to the sequence[k/α], k =
1, 2, . . . as Spec(α) and obtain several of the properties we have described. Addi-
tionally they show that the number of terms in Spec(α) that are less than equal to
n is [(n + 1)/α].

3. Derived Sequences

We now form a new sequenceβ ′(α) (the derived sequence) by making each new term
equal to the number of terms in a run of the terms between two consecutive separators in the
sequenceβ(α).

Consider for example,β(e−1) = 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, . . .. We note thate−1 is
between 0 and 1 with 0 the nearest integer. Hence as is usual for such aβ sequence there
are runs of 0’s between units as separators starting with the first unit. We note that there are
two terms in this sequence between the first and second separators and there are two terms
between the second and third separators with one term between the next consecutive pair of
separators and so on. In this way the derived sequence is found to be

β ′(e−1) = 2, 2, 1, 2, 2, 2, 1, 2, 2, . . .

From inspection it appears that this derived sequence may be anotherβ - sequence with
1 as the separator and 2 as the string term. We now show that this is indeed the case and that
the result holds in general.

Theorem 1

For any irrational numberα, β ′(α) = β(α′)

where α′ = z, {α} < 1/2,

= 1/z, {α} > 1/2,

and z = 1/{α} − 1.

Proof: If we agree to count the number of terms between consecutive separators inβ(α)
beginning with the first occurrence of a separator inβ(α), then withpk as defined in P7, we
see that the kth term in the derived sequenceβ ′(α) is, from P7,

β ′k(α) = pk+1 − pk − 1.

If 0 < {α} < 1/2 this becomes

β ′k(α) = [(k + 1)/{α}]− [k/{α}]− (k + 1)− k

= [(k + 1)(1/{α} − 1)]− [k(1/{α} − 1), from A7.
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Thus β ′k(α) is the kth term of theβ - sequence for1/(1/{α} − 1). Alternatively if
1/2 < {α} < 1 then,

β ′k(α) = [(k + 1)(1/(1− {α})− 1)]− [k(1/(1− {α})− 1)]

= [(k + 1)(1/(1/{α} − 1))]− [k(1/(1/{α} − 1))].

Thusβ ′k(α) is thekth term of theβ - sequence for1/(1/{α} − 1).

Corollary 1

The number of terms in the strings between two consecutive separators in aβ - sequence
must be one of only two values[α′] or [α′] + 1.

Proof: This follows immediately from Theorem 1 and the comments following P5.

Corollary 2

a) If 0 < {α1} < {α2} < 1/2 then α′1 > α′2 > 1.

a) If 1/2 < {α1} < {α2} < 1 then α′2 > α′1 > 1.

Proof: The proof of both parts follows directly from Theorem 1.

If we graphα′ against{α}, then the properties in Corollary 2 are seen clearly from the
graph and we note that the graph is symmetrical about the line{α} = 1/2.

Derived Sequences and Continued Fractions

We now consider the relationship between the terms in the derived sequence and the terms
in the simple continued fraction expansion ofα.

Suppose{α} < 1/2 where{α}has thesimple continued fractionexpansion{0; a1, a2, a3, . . .}.
Then from the theory of continued fractions and Theorem 1 we have,

α′ = z = 1/{α} − 1 = {a1 − 1; a2, a3, . . .} > 1 and a1 ≥ 2.

Hence, when{α} < 1/2 the terms in the derived sequenceβ ′(α) must take on the values
[1/{α} − 1] or [1/{α}], that isa1 − 1 or a1.

For example, if2/5 < {α} < 1/2 then1 < α′ < 3/2 and so{α′} < 1/2. Specif-
ically, {√2} lies in the interval (0.4, 0.5) and{√2} has the continued fraction expansion
{0; 2, 2, 2, . . .}. Consequentlyα′ = 1/{√2}− 1 =

√
2 has the continued fraction expansion
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{1; 2, 2, 2, . . .} and the terms in the derived sequence take on the values 1 and 2. It is seen that
the continued fraction expansion forα′ amounts to a left shift by one term in the continued
fraction expansion for

√
2 and a change in the first occurrence of a 2 to a 1. We also note

that in this example the derived sequence is identical to theβ - sequence for
√

2 (see section
1, example (c)).

On the other hand{α} > 1/2 implies thata1 = 1 and since1 < 1/{α} < 2 we see that
z = 1/{α} − 1 = {0; a2, a3, . . .} < 1 consequentlyα′ = 1/z = {a2; a3, . . .} > 1 and thus
the terms in the derived sequence take on the valuesa2 or a2 + 1.

From the above for anyα we can inspect the terms of its continued fraction expansion
{a0; a1, a2, . . .} and determine which terms will be in the derived sequence forα as follows.

We ignore the initial terma0. If a1 ≥ 2 then the derived sequence will take on the values
a1 − 1 or a1. On the other hand, ifa1 = 1 the terms in the derived sequence will be either
a2 + 1 or a2.

From this it is seen that a derived sequence can never have zero as a term. Consequently
from P3 we see that ifa0 = 0 in the continued fraction expansion ofα thenβ(α) and the
derived sequenceβ ′(α) can never be identical.

Self Derivedβ - Sequences

If theβ - sequence forα is identical to its derived sequenceβ ′(α) we say that the sequence
β(α) is self derived.

From above we have seen thatβ(
√

2) is self derived.

Theorem 2

β(α) is self derived if and only if,α = α′ and either

α = {n; n + 1, n + 1, . . .} =
n− 1 +

√
(n + 1)2 + 4

2
,

in which case{α} < 1/2 or

α = {n; 1, n, 1, n, 1, . . .} =
n +

√
n2 + 4n

2
,

in which case{α} > 1/2, and n is the integer part ofα.

Proof: (a) Ifβ(α) is self derived,{α} < 1/2 andα = {a0; a1, a2, a3 . . .} then from Theorem
1,

α′ = 1/{α} − 1 = {a1 − 1; a2, a3, . . .}, a1 ≥ 2 and α = α′.

Consequently, matching terms in the continued fraction expansions ofα andα′ gives
a0 = n, a1 = a2 = a3 = . . . = n + 1 wheren is a postitive integer.
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Similarly if {α} > 1/2 thenα′ = {a2; a3, a4, . . .} anda1 = 1. So matching terms in the
continued fraction expansions gives

a0 = a2 = a4 = . . . = n,

a1 = a3 = a5 = . . . = 1.

(b) If α = {n; n + 1, n + 1, . . .} and{α} < 1/2 then from Theorem 1

α′ = 1/{α} − 1 = {n; n + 1, n + 1, . . .} = α and thus,

β(α) = β(α′) = β ′(α).

Similarly, if α = {n; 1, n, 1, . . .} and{α} > 1/2 then from Theorem 1

α′ = {n; 1, n, 1, . . .} = α and again,β(α) = β(α′) = β ′(α).

We note that although the terms in the derived sequence forα are independent of the
value ofa0 = [α] we do need to know the value ofa0 to characterise a self derived sequence.

Examples ofα which have self derivedβ - sequences are:

a) n = 1, α = α′ =
√

2 = {1; 2, 2, 2, . . .} , {α} =
√

2− 1 < 1/2
n = 2, α = α′ = (1 +

√
13)/2 = {2; 3, 3, 3, . . .} , {α} = (

√
13− 3)/2 < 1/2

n = 3, α = α′ = 1 +
√

5 = {3; 4, 4, 4, . . .} , {α} =
√

5− 2 < 1/2
n = 4, α = α′ = (3 +

√
29)/2 = {4; 5, 5, 5, . . .} , {α} = (

√
29− 5)/2

b) n = 1, α = α′ = (
√

5 + 1)/2 = {1; 1, 1, 1, . . .} , {α} = (
√

5− 1)/2 > 1/2
n = 2, α = α′ = (

√
3 + 1) = {2; 1, 2, 1, . . .} , {α} = (

√
3− 1) > 1/2

n = 3, α = α′ = (
√

21 + 3)/2 = {3; 1, 3, 1, . . .} , {α} = (
√

21− 3)/2
n = 4, α = α′ = 2 + 2

√
2 = {4; 1, 4, 1, . . .} , {α} = 2

√
2− 2 > 1/2

Corollary 3

If β(α1) andβ(α2) are both self derived then,

a) [α′1] ≥ [α′2] ≥ 1 and 0 < {α′1} < {α′2} < 1/2 whenever
0 < {α1} < {α2} < 1/2.

b) [α′2] ≥ [α′1] ≥ 1 and 1/2 < {α′1} < {α′2} < 1 whenever
1/2 < {α1} < {α2} < 1.
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Proof: The proof of both parts follows from Corollary 2 and the fact that

α1 = α′1, α2 = α′2

.

From Theorem 2 and the graph ofα′ against{α} it is seen that values ofα for which
β(α) is self derived are obtained from the graph by reading the value ofα′ at the appropriate
point of intersection of the graph and straight lines of the formα′ = n + {α} wheren is a
positive integer.

4. Characteristics and the Rapid Generation of theβ-Sequence

Consider theβ - sequence withα = τ −1 = 0.618 . . . (see Section 1, example (f)) which
is 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, . . .

It would be convenient to have a representation of theβ - sequence which allowed us to
indicate the number of terms in each string.

To do this we use a method based on Christoffel [2]. Firstly replace each zero byc and
each unit byd. Hence, we represent the sequence bydcd2cdcd2cd2cd . . . This we will call the
characteristic ofα. In general, the characteristic is obtained from aβ - sequence by replacing
a string of units of lengthk by dk or a string of zeros of lengthj by cj .

In a similar way, we see that ifα =
√

2 − 1 = {0; 2, 2, 2, . . .} then from Section 1,
example (h) the characteristic iscdcdc2dcdc2dcdc . . .

From these examples we observe that if we start withc d then we can obtain a longer
portion of the characteristic and consequently theβ - sequence by using information from
the continued fraction expansion ofα.

The following method is due to Markov [6] and is described in Venkov [9]. An alternative
elegant procedure has been developed by Fraenkel et.al. [3].

In general to form the characteristic we form the following subsequences,

c0 = c, c1 = ca1−1d, where α = {0; a1, a2, a3, . . .}.
Then we formci+1 = (ci)

ai+1−1ci−1ci for i ≥ 1.

Finally by joining (concatenating) our subsequences we form the characteristicc1c2c3c4 . . ..

This result will be formally proved in Theorem 3 and we now illustrate the procedure for,

a) α = τ − 1 = 0.618 . . . = {0; 1, 1, 1, . . .}.
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c0 = c, c1 = c0d = d, cj+1 = (cj)
0cj−1cj = cj−1cj ; j ≥ 1.

Thusc2 = c0c1 = cd, c3 = c1c2 = dcd, c4 = c2c3 = cddcd, and it is seen thatc1c2c3 . . .
is indeed the characteristic.

b) α =
√

2− 1 = {0; 2, 2, 2, . . .}.
c0 = c, c1 = cd, cj+1 = cjcj−1cj ; j ≥ 1.

Thusc2 = c1c0c1 = cdccd, c3 = c2c1c2 = cdccdcdcdccd, and again the characteristic is
generated as before.

We note that in both examplesα is of the form{0; n, n, n, . . .} and in these circumstances
aj = n for j ≥ 1 in the general procedure described above.

We now proceed to develop Theorem 3.

Supposeα = {a0; a1, a2, . . .} then we define forj ≥ 0,

tj = {aj ; aj+1, aj+2, . . .} = aj + {0; aj+1, aj+2, . . .}
= aj + 1/tj+1

and fj = 1/tj+1 = {tj} = {0; aj+1, aj+2, . . .} = tj − aj .

In particular,

t0 = α , f0 = {α},
t1 = 1/{α} = {a1; a2, a3, . . .} = a1 + 1/t2 = a1 + f1,

f1 = 1/t2 = t1 − a1 = {t1} = {1/{α}} = {0; a2, a3, . . .}.

If 0 < α < 1 thenα = {0; a1, a2, . . .}, t1 = 1/α and f1 = {t1} = {1/α}.
Lemma 1.

If 0 < α < 1 andmk = [k/α], wherek is a positive integer, then

a)αmk = α(ka1 + [kf1]) = k − α{kf1}
b) [αmk] = k − 1 , [(mk + 1)α] = k
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c) mk+1 −mk = a1 + βk(f1)

d) βmk
(α) = βmk+1

(α) = 1 , βj(α) = 0 for j = mk + 1, mk + 2, . . . , mk+1 − 1.

Proof: (a) From our definitions,

mk = [kt1] = [ka1 + kf1] = ka1 + [kf1] = ka1 + kf1 − {kf1}
= kt1 − {kf1} = k/α− {kf1}

(b) Since0 < {kf1} < 1 we see from (a) thatk − 1 < αmk < k and thus
[αmk] = k − 1.

Now α(mk + 1) = α + αmk = k + α(1− {kf1}), from (a), and thus
k < α(mk + 1) < k + 1, giving [α(mk + 1)] = k.

(c) mk+1 −mk = (k + 1)a1 − [(k + 1)f1]− ka1 − [kf1], from (a),

= a1 + βk(f1).

Since0 < {α} < 1 for any irrationalα we see that the results in Lemma 1 hold for any
irrationalα with α replaced by{α}. This also follows from A23.

(d) βmk
(α) = [(mk + 1)α]− [mkα] = k − (k − 1) = 1, from (b).

βmk+1
(α) = [(mk+1 + 1)α]− [mk+1α] = (k + 1)− k = 1, from (b).

Also
mk+1−1∑
j=mk+1

βj(k) = [mk+1α]− [(mk + 1)α] = 0, from (b),

and from P3 we haveβj(α) = 0 for j = mk + 1, mk + 2, . . . , mk+1 − 1.
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Theorem 3.

The characteristic ofα, K(α; c, d), is obtained from theβ - sequence by firstly replacing
the term[α] by c and[α] + 1 by d.

If we next define the subsequence< ck > by

co = c, c1 = (c)a1−1d, cj+1 = (cj)
aj+1−1cj−1cj , for j ≥ 1

thenK(α; c, d) =< ck >= c1c2c3 . . ..

Proof: We will prove the theorem for0 < α < 1.

In theβ sequence we select the string of terms,βmk
+ 1, βmk

+ 2, . . . , βmk+1
which from

Lemma 1 (c) will becomecmk+1−mk−1d in K(α; c, d).

For the particular case wherek = 1, mk = a1 and so beginning with the termβa1+1(α)
in theβ sequence we see that the corresponding string in the characteristic is,

(c)m2−m1−1 d (c)m3−m2−1 d (c)m4−m3−1 d . . .

Since[a1α] = 0 and[(a1 + 1)α] = 1 from Lemma 1(b) we see that the string of terms
β1(α), β2(α), . . . , βa1(α) in theβ - sequence becomes the string(c)a1−1d in the characteristic.

Hence from Lemma 1 (c) we have

K(α; c, d) = (c)a1−1 d (c)a1−1+h(1) d (c)a1−1+h(2) d . . .

whereh(k) = βk(f1).

Now since0 < f1 < 1 theβ - sequence forf1 will consist of only zeros and units. Thus,
if K(f1; c, d) is the characteristic off1 then the characteristic ofα can be obtained from it by
replacing eachc in K(f1; c, d) by c1 = (c)a1−1d and eachd by d1 = (c)a1d and adjoiningc1

on the left.

Thus
K(α; c, d) = c1K(f1; c1, d1)

where,
c1 = (c)a1−1d and d1 = (c)a1d.

Similarly, we can show that

K(f1; c1, d1) = c2K(f2; c2, d2)
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where,
c2 = (c1)

a2−1d1 , d2 = (c1)
a2d1, f2 = 1/f1 − a2 and thus

K(α; c, d) = c1c2K(f2; c2, d2).

Proceeding in this way we have,

K(α; c, d) = c1c2 . . . cjK(fj ; cj, dj)

where, forj ≥ 0,

c0 = c, d0 = d,

cj+1 = (cj)
aj+1−1dj,

dj+1 = (cj)
aj+1dj.

We see thatdj+1 = cjcj+1 and hence we have

c0 = c, c1 = (c)a1−1d, cj+1 = (cj)
aj+1−1cj−1cj , for j ≥ 1.

16
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APPENDIX

RELATIONSHIPS FOR THE BRACKET FUNCTIONS { } and [ ]

We now consider some properties of the bracket functions of division namely{x}and[x].

In what follows unless otherwise statedx andy are real,n is any integer
(. . .− 2,−1, 0, 1, 2 . . .) k is a positive integer(1, 2, 3, . . .) andf is a real fraction such that
0 ≤ f < 1. Also |x| is as usual the absolute value function defined as|x| = x, if
x ≥ 0 and − x if x < 0.

DEFINITIONS

Integer Function[x]

We define[x] to be the largest integer not exceedingx. Hence

[x] = max integern : n ≤ x

.

It follows that[π] = 3 but that[−π] = −4. Thus for non negative reals[x] is the same as
the truncation ofx (that isx without the decimal fraction).

Fractional Part Function{x}.
We define

{x} = x− [x]

As we will show below (A 12), {−π} = 1− {π} = .8584 . . .

Note 1: If we consider a circle of unit circumference (not a unit diameter as is
usual with complex algebra) then we can visualise {π} as wrapping a string of length
π clockwise around our circle from some point, which we call the origin, and ignoring
full loops (of which there will be [π]): the length of the part of the string remaining is
{π}.

For −π, we wrap our string anti clockwise. Again we ignore loops of which there
will be [π]. But in this case −[−π] = one more than the number of loops. And we
emphasise that {−π} is not equal to the length of the part of the string remaining but
rather it is equal to the length of the arc of the circle not covered by this string. In
each case the fractional part is equal to the anti-clockwise distance from the end of the
string to the origin.

Note 2: These functions come from the division algorithm

y = ix + r, where 0 ≤ r < x
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i, of course, is always an integer. If y and x are integers then r, the remainder, is also
an integer. If both are rational then so is r. If at least one of x or y is irrational then
so is r unless r is zero. It follows that y/x = i + r/x , and hence, for positive x and
y, i = [y/x] and r/x = {y/x}. Thus for x positive, it follows that i is identical to the
integer part.

PROPOSITIONS

A1. [n] = n Thus in particular [−9] = −9

A2. x− 1 < [x] ≤ x.
The right inequality follows from the definition. The left inequality follows
from the fact that there can be only one integer between x and x − 1 (this
must be so otherwise this range would be greater than unity). Hence
[19.6] = 19 lies between 18.6 and 19.6.

A3. [x] ≤ x < [x] + 1
This follows by rearranging A2.
Hence 19.6 lies between 18 and 19.

A4. [n + f ] = n.
This follows from A1 and because n ≤ n + f < n + 1
Thus [19 + .6] = 19

A5. {n + f} = f.
This follows immediately from the definition of {x} and A4.
Thus {19 + .6} = .6

A6. {{x}} = {x}
Thus {{19.6}} = {19.6}

A7. [n + x] = n + [x]
As LHS = [n + [x] + {x}] = RHS, from A4
Hence [7 + 19.6] = 7 + [19.6]

A8. {n + x} = {x}. This follows immediately from A7.
Hence {7 + 19.6} = {19.6} and {−7 + 19.6} = .6. In particular
{−7 + .6} = {−6.4} = .6

A9. [ [y] + x] = [y] + [x] = [ [x] + y], from A7
hence [ [19.6] + 3.5] = [19.6] + [3.5] = [ [19.6] + 3.5]

A10. [− | x | ] = −[ | x | ]− 1, where x is not integer.
We note that [− | n | ] = −[n] follows from A1.
Now if [ | x | ] = k, then from A3, k ≤| x |< k + 1.
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Hence −k − 1 < − | x |≤ −k, from which the result follows.
For example [π] = 3, [−π] = −4. From this we immediately have

A11. [n] + [−n] = 0 and
[x] + [−x] = −1 ,wherex is not integer.
Thus [ -x ] = - 1 -[x] = - ( 1 +[x] ) hence [−19.6] = −(1 + [19.6]) = −20.

A12. {x}+ {−x} = 1, where x is not an integer.
Follows by substituting in A11.
Hence {−x} = 1− {x} and thus {−π} = 1− {π} = .8584 . . .
Another way of looking at this is that {−k + f} = {−(k− 1)− (1− f)} = f
Hence {−19.6} = {−20 + .4} = .4 , which agrees with A8 .

A13. [x] + [y] ≤ [x + y] ≤ [x] + [y] + 1
From A9 and A3, LHS = [ [x] + y] ≤ [x + y] ≤ x + y < [x] + [y] + 2 = RHS
Thus [19.6] + [3.5] ≤ [19.6 + 3.5] ≤ [19.6] + [3.5] + 1

A14. [x/k] = number of positive integral multiples of k not exceeding x, where
x > 0.
this follows directly from the division algorithm.

A15.

[kf ] + [k(1− f)] = k − 1, kf not an integer

= k, kf an integer

where 0 < f < 1

From A7 and A11.

[k(1− f)] = k + [−kf ]

= k − 1− [kf ], In the case when kf is not integer

= k − [kf ], In the case when kf is not integer

A16.

{kf}+ {k(1− f)} = 1, kf not an integer

= 0, kf an integer

where 0 < f < 1

Follows as {k(1− f)} = {−kf} , from A8 and then use A12.
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A17. (n + 1)/k ≤ [n/k] + 1
n = [n/k]k + r , where r is an integer and 0 ≤ r ≤ k − 1
Hence (n + 1)/k = [n/k] + (r + 1)/k ≤ [n/k] + 1.

A18. [ [x]/k] = [x/k].
Let i = LHS = [ [x]/k] then using A2, A3 and A17 we have
i ≤ [x]/k ≤ x/k < ([x] + 1)/k ≤ i + 1
That is i ≤ x/k < i + 1, and the result follows from A3.

A19. The nearest integer to x is k = [x + 1/2].
this is equivalent to showing that
| [x + 1/2]− x| < 1/2.
This follows from A2 since
−1/2 = (x + 1/2)− (x + 1) < [x + 1/2]− x ≤ (x + 1/2)− x = 1/2
An alternative proof is the following: Firstly consider the case where x is
nearer to [x],
then x = [x] + y, where y < 1/2. In this case
[x] < x + 1/2 = [x] + y + 1/2 < [x] + 1 and hence k = [x] as required.
Consider now the other possibility, that is x is nearer to [x] + 1. In this case
x = [x] + 1 − y and it follows that [x] + 2 > x + 1/2 > [x] + 1 and thus
k = [x] + 1, thus completing our proof.

A20. An immediate corollary of A19 is that if the integer k = x ± y, where x, y
are real such that y < 1/2 then k = [x + 1/2].
Thus for example, if τ is the golden section (1.618 . . .) we can obtain the
Fibonacci numbers directly from

Fk = [τk/
√

5 + 1/2]

This is less cumbersome than calculating the second term in the Binet ex-
pression

√
5Fk = τk − (−1/τ)k

A20a. −[−x] is the smallest integer not less than x.
Now −x − 1 < [−x] ≤ −x, from which we obtain the result by multiplying
through by −1.
Thus −[−19.6] = 20 is the smallest integer greater than 19.

A21. As k increases without bound
lim[ k →∞]/k = x.
Now by definition kx− 1 < [kx] ≤ kx. Hence
x− 1/k < [kx]/k ≤ x, and the result follows.
Thus [1000 ∗ 1.618]/1000 is about 1.618.

A22. a) [kτ 2] = [τ [kτ ] ] + 1 = [kτ ] + k
The equality of the first and third terms follows because τ 2 = τ + 1
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Let f = {kτ} = kτ − [kτ ]
But τ 2 = 1 + τ and hence
kτ 2 − [kτ 2] = f . That is {kτ 2} = {kτ} = f .

And as 1/τ = τ − 1,

−f/τ = f(1− τ),

= (kτ 2 − [kτ 2])− (kτ 2 − τ [kτ ] ),

= τ [kτ ]− [kτ 2].

The equality of the first and second terms follows as 0 < f < 1 < τ .
Thus with k = 6, we have [τ [6τ ] ] = 14 and [6τ 2] = 15.
b)[τ [kτ ] ] = [kτ ] + k − 1.
Follows trivially from a).
c) {τ [kτ ]} = 1− {kτ}(τ − 1).

{τ [kτ ]} = τ [kτ ] − [τ [kτ ] ]

= τ [kτ ] − ([kτ ] + k − 1), from a)

= [kτ ](τ − 1)− k + 1,

= (kτ − [kτ ])(τ − 1)− k + 1,

= k(τ 2 − τ − 1)] + {kτ}(τ − 1),

and the result follows as the first term in brackets is zero.

A23.

[[k/{α}]{α}] = k − 1, if k is not a multiple of{α}
= k, if k is a multiple of{α}

To show this we consider [k/{α}] = k/{α} − {k/{α}}
and thus [k/{α}]{α} = k − {k/{α}}{α}.
From this it is seen why we insisted that we use only a fractional part (or a
value less than 1) as this ensures that the final product term must be less
than unity. By taking the truncation the result follows.
Hence [.3[15/.3] ] = 15 but [.31[15/.31]] = 14.

A24. {{kx} − {jx}} = {(k − j)x}
From A8, LHS = {kx− [kx]− jx + [jx]} = {kx− jx} = RHS
Thus {{150 ∗ 19.6} − {50 ∗ 19.6}} = {50 ∗ 19.6}.
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A25. {k{x}} = {kx}
The result follows from A8 and k{x} = kx− k[x]. Thus
{100{19.6}} = {100 ∗ 19.6}

A26. Integer parts play an important role in the mathematics associated with the
pigeon hole principle which can be stated as -

A26a. If j + 1 pigeons are placed into j holes then at least one hole will contain at
least two pigeons. Thus if we try to place 11 pigeons into 10 holes then at
least one hole must have two or more pigeons in it.
A generalisation of this is the following.

A26b. If k pigeons are placed into j holes than at least one hole will contain at
least h + 1 pigeons where h = [(k − 1)/j]
To show this, consider what happens if the largest number of pigeons in a
hole is h. Then it follows that the total number of pigeons cannot exceed jh.
But from A2, [(k−1)/j] ≤ (k−1)/j and thus kh ≤ k−1, hence it would be
impossible for the total number of pigeons to add up to k and thus at least
one hole must contain more pigeons than h.

Thus if we try to place k = 23 pigeons into j = 10 holes we have h =
[22/10] = 2 and thus at least one hole must have at least 3 pigeons. To
minimise the number of pigeons per hole we place 2 pigeons into each of the
10 holes. This leaves 3 over which forces at least one hole to have more than
2.
Note: With k = j + 1 we of course obtain A26a and with k = ij + 1 we are
sure that there will be at least i + 1 pigeons in a hole.
Furthermore if we have a total of j2 + 1 pigeons then there must be a least
j + 1 pigeons in a hole. And this result enables us to prove the following
nice result (Erdos 1935).
Given a sequence of exactly j2 + 1 distinct integers either there is an in-
creasing subsequence of j + 1 terms or a decreasing subsequence of j + 1
terms.
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