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PREAMBLE

Leonardo of Pisa (of leaning tower fame), better known to us as Fibonacci, wasborn
about1175and died about 1250. His fame rests mainly on his bookLiber Abacci (A Book
about the abacus or, the book of calculations - in fact its objective was to make the abacus
obsolete) which he wrote in1202.

A second revised version was produced in 1228 and this great document translated with
many errors by Boncompagni (see reference 2a) in 1857 is what has survived to this day
and gives us analmost complete statement of the mathematical knowledge that had
accumulated in the West since the Greeks.It can also be regarded as a comprehensive
merchant’s handbookas its stated aim was to demonstrate to these merchants the advantages
of the Hindu-Arabic number system compared with the Roman system which apart from
its clumsiness didn’t even have a zero symbol. However the merchants then being much the
same slaves to conformity as their present day counterparts rejected his system. It in fact took
many decades to be accepted commercially; the transition was much more painful and time
consuming than for example the recent conversion from British to metric measurements.

Unfortunately for posterity all that is known of him is contained in the second short
paragraph of the second edition. Fortunately a numerate classics scholar Richard Grimm has
recently taken an interest in his Book and studied the manuscript in Florence on which the
Boncompagni was based (see reference 5a) and interesting work should emerge from that
study. Leonards father was a merchant and customs officer and the family lived in Bugia
(Morocco) during his childhood.

Thus he was exposed to Arabic influences at an early age and in particular he was familiar
with the works of the great mathematicianal-Khwarizmi dating from about 825. Born about
780 this mathematician and astronomer was in fact a Persian who lived in Baghdad and wrote
two books which are known to us. One was on the Hindu-Arabic positional method and from
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the title of the other (al-jabr) came the wordalgebra. A misspelling of his name gives us
algorithm which is now one of the most important words in computer science.

When we say that Fibonacci’s book was produced we mean that it was copied by hand as
printing had not been invented. However even after printing had been established it was still
not printed, incredibly, until 1857 see Boncompagni, reference [2]. And even now there is
not an English translation! Regarding mathematical books we note the following:

1. The very first printed book devoted entirely tomathematics appears to be the
“Treviso Arithmetic", named after Treviso, a small town near Venice. The book was printed
in 1478 in the Venetian dialect which was one of the sources of modern Italian (the main
source was of course Tuscan the language of Dante). Like the Liber it is mainly concerned
with an explanation of the Hindu-Arabic system
(see Deal [3], [9]).

2. It is a little known but significant fact that until recently, next to the Bible,the book with
the highest number of copies printed and the widest distribution was a mathematical
book namely; Euclid’s Elements.

Fibonacci had several aliases which appear in his manuscripts. In Latin these are as
follows:

Leonardus Pisanus (Leonard the Pisan).

Leonardus filius Bonaccii, (Leonard Fibonacci). Fibonacci was the family surname in
Italian. and literally means “son of the simpleton (Bonaccio)"

Leonardus Bigollus “Bigollo" in Tuscan dialect is roughly translated as “absent minded"
or even“blockhead" , and this nickname probably arises out of his family name. (It also
meant traveller).

From this it is not surprising that he was called “the dunce", son of “the dope" even
though his father’s name was in fact “Guilielmus" (William) and not as commonly believed
Bonaccio. It was not until 1838 that “ . .the sobriquet Fibonacci was foistered on Leonardo
by the mathematical historian Libri.." (see reference 2b).

However today he is remembered in general only through hisFibonacci numbers which
arise out of the rabbit problem. This is unfortunate as although the mathematics associated
with Fibonacci Numbers is widespread, deep, and full of mysterious patterns he most certainly
did not carry out any analysis of these numbers apart from establishing that each term is equal
to the sum of the preceding two and mentioning that the process goes on indefinitely. The
numbers were not even referred to as Fibonacci until 1877.

His major achievments are at a far higher level than this and are detailed in Gies, references
[4] and [2b]. Of special importance is his work on Diophantine analysis (Pythagorean triplets)
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and congruent numbers. His method for determining numbers that can be added to squares to
obtain squares is probably one of the most important results in number theory before Fermat.
In particular he analysed the cubic

x3 + 2x2 + 10x = 20,

and showed that it cannot be solved by square roots. As well he detailed an extremely
accurate method for solving this equation numerically (having shown that it cannot be in the
form

√
(a +

√
b) and hence is not associated with a geometric construction using straight

edge and compass). It should be emphasised that algebraic methods at this stage did not
use any special notation; that is, they were rhetorical; it took almost 500 years to develop
the symbolic notation that we now use. Such notation is convenient but as that Prince of
mathematicians Gauss said, what mathematicians need are “notions not notations".

His book beginsThe nine Indian figures are : 987654321. With these figures, and
with the sign 0.. . any number may be written, as is demonstrated below.

It then goes on for seven chapters to describe these new numerals and show how they
may be applied to practical problems. It should be pointed out that the Arabs were using the
base 60- the Babylonian sexagesimal, from which we inherited our angular units of minutes
and seconds. So his book contains both base 10 and 60. However, he didnot use decimal
fractions, even though they had been developed by the Arabs about 952. Simon Stevin (see
references [5] and [8]) appears to be the first westerner to have systematically developed the
use of such fractions but their use did not became wide spread in the western world until the
end of the sixteenth century.

Fibonacci had a rather strange way of dealing with fractions which he represented as
sums of reciprocals, so that 5/6 becomes 1/3 1/2. These are calledEgyptian fractions (see
reference 5b). It is interesting to imagine what might have developed if he had been lead into
continued fractions by such a device.

No biography or painting is known of him but this is not unusual even for Kings and
Bishops in the middle ages. But one thing is certain from his writings. Even though he
dedicated his book to a famous astrologer and lived at a time when numerology, astrology
and quakery were very fashionable, he was a very down to earth mathematician; the complete
contrast to the Pythagorean mystics who now seem to dominate the ranks of those studying
in this area.

It is of interest to note that the next record of the Fibonacci numbers being studied is in
the work ofKepler, in his small monograph (1611), just on four centuries after Fibonacci,
“Strena seu de Nive Sexangula(A New Year Gift : On Hexagonal Snowperhaps a better
translation is - on the six cornered snowflake, see reference [7] and the annotation). Kepler
was apparently quite unaware of Fibonacci’s work and as well as rediscovering the sequence
and the recurrence property he made a remarkable discovery about the ratios of consecutive
terms of the Fibonacci sequence
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1, 1, 2, 3, 5, 8, . . “. . .as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13,
so is 13 to 21 almost” and guesses that these ratios approximate what he calls the divine
proportion and what we call the golden section (defined below). That is he saw that the
ratios 1/1, 2/1, 3/2, 5/3, . . rapidly approachφ = 1.618. In fact the first ratio is below, the
second above, the third below and so on. He then goes on to say that he believes that the
“seminal faculty” (that is the reproductive process)“is developed in a way analogous to
this proportion which perpetuates itself.” This is a particularly insightful comment as he
is implying that Fibonacci numbers and henceφ are fundamental to the biological process
of self replication. The insight was overlooked by biologists until comparatively recently
only being picked up with the serious study of phyllotaxis - leaf arrangements in plants, in
the nineteenth century.

His little book is mainly concerned with the packing together of circles in a plane and
spheres in space. It also describes the structure of flowers in quincuncial arrangements
(arrangments of 5 things placed at each of the four corners of a square) and this moves Kepler
to the belief that they express“an emanation of a sense of form, and feeling for beauty,
from the soul of the plant”.

Also Kepler examines the regular Platonic solids and in particular the dodecagon and
icosahedron and guesses that“the structure of these solids in a form so strikingly pentag-
onal could not come to pass apart from that proportion which geometers today pronounce
divine”.

From this it is seen that unlike Fibonacci, Kepler was very much a mystic so much so that
he insisted, and even doctored some of his data to show, that the planetary orbits were still
based on the Platonic solids, even after discovering the more elegant model where the the
orbits are ellipses with the sun at a focus. In doing this he was the first to demonstrate that after
2000 years of lying waiting, conic sections could be applied to a real world problem. That’s
right! 2000 years previously the mathematics of these conic sections (parabolas, ellipses,and
hyberbolas formed by cutting a cone with a plane) were first studied exhaustively (in an eight
volume masterpiece which was the standard reference on conics until recent times ) by the
GreekApollonius of Perga who, next to Archimedes, Pappas and Pythagoras, was probably
the most important mathematician of antiquity. He devoted the whole of his life to the study
of these conics and never even considered that there could be any real world applications.

There are many other examples of important mathematics being developed initially only
for purity and then turning out to be vital in some practical application. Perhaps the most
dramatic of these in recent times occurs with the pure development of non-Euclidean geometry
(originally begun by Gauss, thence, by Riemann and perfected by Minkowski) which was so
vital for the conception and formulation of Einstein’s Theory of Relativity.

The Golden Sectio - Aureo Section

The Golden section was an object of great interest during two of the golden ages of history:
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firstly with the Greeks and then during the European Renaissance. Was this a coincidence
or was this object a symbol of the freedom and vitality of thought that is associated with a
resurgence of creativity? Let us hope that the latter is correct because it has again reemerged
as an object of some interest to both biologists and mathematicians in such apparently diverse
areas as optimisation, computing science and pattern formation.

Aureo secto is the L. literal translation of golden mean. Allied terms are:aurea medi-
ocritas which sometimes means “the happy mean" (not to be confused with a sun tanned
ocker);ariston metron which also means “the middle course is best" (course comes from
ariston = the Greek for breakfast from which we get aristology = the art of dining).

We will use the symbolφ for this Golden section and define it as the positive solution to
the quadratic equationx2−x−1 = 0. Henceφ = (1 +

√
5)/2 = 1.618033989.. (noting that

asφ involves the square root of 5 it is thus an algebraic irrational, that is, it is the solution of
a polynomial equation. In contrast a number likeπ although irrational, cannot be expressed
as the root of a polynomial equation and is called a transcendental number). The symbolφ is
appropriate as it the first letter ofPhidias the name of the Greek sculptor who often used the
Golden section in proportioning his sculptures. If one frames the Pantheon with a rectangle
it is found to have sides in the ratio ofφ. However mathematicians today more commonly
represent this number byτ , tau, which is the first letter of the Greek word for section or cut.
(May we be excused for now referring to Fibonacci asφ-Bonacci).

The first recorded awareness ofφ appears to be with the Pythagoreans towards the latter
half of the 6th century BC who knew of the various Golden relationships within the pentagon.
The first written record we have is in Euclid’s elements (about 3rd century BC) where the
following problem is solved. “To cut a given straight line so that the rectangle contained
by the whole and one of the segments is equal to the square on the remaining segments"
(Book II Propostion 11). “To cut a given finite line in extreme and mean ratio" (Book IV,
11). It appears that the first technique is due to the Pythagoreans and the second is due
to Euclid. From these techniques we are led into the construction of a golden triangle (an
isosceles triangle whose base angles are each twice the other angle) (IV, 10) and hence to the
construction of the regular pentagon (IV, 11). It was not until 1844 that the term “Golden
section" was first introduced. Previous to that the term “Divine proportion" was generally
used. In 1509Fra Pacioli had his famous book printed“Divina Proportion" which listed
almost as objects of veneration many of the properties ofφ. The geometrical drawings for
this book were done by Leonardo da Vinci. It is now known that Pacioli copied much of his
book from a manuscript ofPier della Francescawhich is now in the Vatican. The terms
“sectio divina" and “proportio divina" are both found in the writings of Kepler.

From the quadratic equation

x = 1 + 1/x.

Iterating we havex = 1 + 1/(1 + 1/x)
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from whichφ = 1 + 1/(1 + 1/(1 + 1/(1 + ...).

This expression is is called a continued fraction, from which it can be shown that, not
only isφ irrational but that it is the most difficult of all numbers to approximate by a rational
fraction. Because of this infamy it can be regarded as the the most irrational of the irrational
numbers.

Definitions and Properties

So for starters we have theFibonacci sequence(which was first given this name in 1877)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . (F)

We generate this by writing down the first two terms 1, 1 and then using the following
rule (algorithm) to generate the next term. “Form the next term by adding the last two terms
in the sequence". We will simply call this sequenceF from now on. Let us introduce some
terminology. The symboluj for the jth term is sometimes used but we prefer the symbol
Fj to remind ourselves that we are dealing with this sequence rather than one of the allied
sequences. Thus if we call the first termF1 and so on, then we have the recurrence

F1 = F2 = 1,

Fj+2 = Fj+1 + Fj , for j = 1, 2, 3, 4, ...(R)

This results inF5 = 5, which is a good check that you have written down the sequence
correctly. SometimesF0 is defined as zero in which case we start by definingF1 = 1 and
then (R) holds forj = 0, 1, 2, ..

The followingcomputer program outputs the termsj = 1
F = 1: “F is jth termP is (j − 1)th term"

P = 0

print F, P : “at this stage we haveF1 = 1, F1 = 0”

Labelj = j + 1

X = F

F = F + P

Phi = F/P : “This will approach golden section"

PrintPhi

P = X

PrintF, j : This givesFj starting withF2
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IF j is big enough stop, otherwise go to Label.

We can readily check on our calculator that Kepler’s observation holds and that the ratio
of successive terms does indeed tend towardsφ. This can be shown as follows

Fi+1/Fi = (Fi + Fi−1)/Fi = 1 + 1/(Fi/Fi−1)

= 1 + 1/(1 + 1/(Fi−1/Fi−2) = 1 + 1/(1 + 1/(1 + .. = φ.

SOME PROPERTIES¸

In terms of beautiful patterns F is one of the richest sequences that can be imagined. Here
are some of the patterns which can be readily checked especially if you have access to a
computer.

P1. Every third term is divisible by 2, every fourth term is divisible by 3, every fifth term
is divisible by 5, every sixth term is divisible by 8 and so on. In other wordsFn divides the
nth term, as well as the2n th, 3n th, 4n th, terms etc.

HenceFn divides every termFnk for k = 1, 2, . . .

In particular we note that we always have two odd terms separated by an even term, three
terms not divisible by 3 separating a pair of terms that is, and so.

P2. The last digits in each term repeat a cycle of 60 numbersand the last two digits
repeat a cycle of 300 numbers and so on (the repeating cycle is 1,500 for the last three digits,
15,000 for the last four digits, 150,000 for the last five and so on).

P3. The square of each term differs by 1 from the product of the two terms on either side.
This difference is alternatively plus or minus as we progress. (This result was proved by J.D.
Cassini in 1680 (Histoire Acad. Roy. Paris 1, 201, although Simpson proved it independently
in 1753, [9]).

Fn+1Fn−1 − (Fn)2 = (−1)n.

That is
Fn+1

Fn

− Fn

Fn−1

=
(−1)1

FnFn−1

That is the difference between two successive ratios of Fibonacci numbers is alternatively
plus or minus. Furthermore, this difference gets progressively smaller confirming that the
ratio does converge toφ in the limit.

P4. Consecutive terms are relatively prime(that is they cannot have a common factor
other than 1). This follows from the expression in3. If Fn+1 andFn had a common factor it
would also have to be a factor of(−1)n which is impossible if it were other than unity.

P5. The sum of the squares of any two consecutive terms is another term which we note
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has an odd subscript (first proved by Lucas in 1876)

(Fn)2 + (Fn+1)
2 = F2n+1.

Now form a sequence made up of the squares of the terms then, from this form a new
sequence made up of the sums of consecutive squares. It follows from our relationship that
this new sequence will be the same as the sequence of terms with odd subscripts.

P6. For anyfour consecutive terms A,B,C,D :C2 −B2 = AD.

P7. With the exception of 3,every term that is prime has a prime subscript(thus 233
is prime and has a prime subscript 13). However be warned that the converse does not hold:
a prime subscript does not mean that the the term is prime. Our first counter example does
not occur untilF19 = 4, 181 where although 19 is prime
4,181 = 37 times 113 and is thus composite.

In fact if the converse held it would tell us that the number of terms which are prime is
infinite. As it is we just do not know how many terms are prime.That is we just do not
know whether a largest prime Fibonacci number exists. This is one of the many unsolved
Fibonacci problems.

P8. It was only recently proved thatF12 = 144, is the only term (apart from the trivial
case of 1) which is a square.Surprisingly it also happens to be the square of its subscript.

P9. For every integeri there are an infinite number of terms that can bedivided by i and
at least one can be found amongst the firsti2 terms.

P10. The sum of the firstn terms is one less than a Fibonacci number. In fact thesum of
the first n terms is Fn+2 − 1. (Again this result is due to Lucas).

P11. If we expandG(z) = 1/(1− z − z2) as a power series in z we obtain

F1 + F2z + F3z
2 + F4z

3 + . . . + Fiz
i−1 + . . .

That is the coefficient ofzi−1 generates the ith Fibonacci number and henceG(z) is the
generating function for the Fibonacci numbers.

This is readily checked. Multiply the power series succesively by1,−z, and−z2, regroup
the terms and everything else cancels out leaving 1.

P12. We note that the reciprocal ofF11 = 89, can be written in the following curious
way. Start with .0 then add the first term obtaining .01 then add the next term obtaining .011
and so on from which

.0112358

8



13
21
34
55
89
. . .

————–
.0112359550. = 1/89

Also 10000/9899 = 1.010203050813213455. . , which follows immediately from substi-
tuting z = 0.01 in11.

P13. As
Fj = Fj−1 + Fj−2

Fj/Fj−1 = 1 + 1/Fj−1/Fj−2

= 1 + 1/(1 + 1/Fj−2/Fj−3)
= 1 + 1/(1 + 1/(1 + 1/(1 + . . .

which is in the form of a continued fraction. Asj becomes unbounded this approaches the
golden sectionφ = 1.628. .

P14. The number of kilometers in a mile (1.609..) is roughly equal toφ, hence we can
do conversions as follows:

a) if we have a speed ofFj mph then this is aboutFj+1 kilometers per hour

b) otherwise we express the kph say x in terms of a sum of Fibonacci numbers and then
reduce each term to the next smaller Fibonaacci number - (this is roughly equal to dividing
by φ). The simplest way to get our sum is to subtract the largest Fibonacci number less than
x then repeat for the remainder etc.

Thus 60 kmh = 55 + 5 gives 34 + 3 = 37 mph

whereas going up in similar fashion

60 mph = 55 + 5 gives 84 + 8 = 92 kmh.

These Fibonacci patterns are so rich and intertwined that we could literally fill books
just describing them, and shelves of books proving our results. In fact a journal was started
in 1963, devoted exclusively to reporting such patterns and their impact on number theory,
namely The Fibonacci Quarterly (see reference [1]). Also see Vorob’ev references [11], [12]
for an elementary mathematical introduction and more recently Steven Vajda [15].

Some Important Relationships

Probably the most important relationship that comes out of our sequence is what is
sometimes called theBinet formula (after the French mathematician (1786 to 1856) which
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relates Fibonacci numbers to the golden sectionφ as follows

√
5Fj = φj − (−1/φ)j, (B)

or √
5Fj = {(1 +

√
5)/2}j − {(1−√5)/2}j

or
Fj = (φj − yj)/(φ− y),

where
y = −1/φ = (1−√5)/2,

and thusφ is the positive root and y the negative root of

x2 − x− 1 = 0.

We also note that
φy = −1 and that φ− y = φ + 1/φ =

√
5.

Firstly we should point out that in fact this formula wasfirst discovered and proved
by Daniel Bernoulli in 1724. In 1726 Euler mentioned the formula in a letter to Bernoulli.
Shortly afterwards A. de Moivre ("Miscellanea Analytica - London 1730 obtained the result
in the first systematic account of linear recurrences, pages 26 to 42). Although Binet appears
to have discovered the formula independently he did not publish his findings until 1843. The
formula is often mistakenly attributed to Lucas who may have rediscovered it but he did not
report it until 1876.

(B) tells us a great deal and is used as the basis for the proof of all sorts of other
relationships. As the second term decreases in absolute magnitude withj we can immediately
state that for largej, Fj approaches (is asymptotic to)θj/

√
5. In fact, as is readily checked,

this is quite a good approximation even for values ofj as low as 5 (when the error is about
4%). Aneasierway to carry out the calculations is to simply calculateθj/

√
5 and takeFj as

thenearest integer. This is equivalent to

Fj = [φj/
√

5 + 1/2],

where[x] is the integer part ofx.

We now offer aproof of (B). To do this we show immediately by substitution thatB
satisfiesR. Then we show that there is no other solution. Suppose to the contrary that there
is another solutionuj. Thenzj would also satisfy(B) wherezj = Fj − uj, with z0 = z1.
Induction shows immediately thatzj = 0 for all j and hence we have proved thatB is the
unique solution toR.
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An alternative derivation of this formula is to note that the generating function can be
expressed in partial fractions as follows

√
5G(z) = 1/(φ− z) + φ/(1− φz).

= −y(1/(1 + zy) + φ(1/(1− φz).

Now expand each of the terms in brackets as a power series obtaining
√

5G(z) = φ(1 + φz + φ2z2 + φ3z3 + ..φjzj + ..)

−y − y2z − y3z2 − y4z3 + ....− yj+1zj + ..).

But from 11, the coefficient ofzj must beFj+1 hence (B) is true.

Another powerful result is

φj = Fjφ + Fj−1, for j = 2, 3, (C)

Proof By induction: we firstly note that it is true for

j = 2, as φ2 = φ + 1, and F2 = F1 = 1.

Next we assume that it is true forj = k that is thatφk = Fkφ + Fk−1.

But assuming this

φk+1 = φkφ = Fkφ
2 + Fk−1φ = Fk(1 + φ) + Fk−1φ

= (Fk + Fk−1)φ + Fk = Fk+1φ + Fk,

and hence the result is true forj = k + 1 as required. We also note that

φj = (Fj

√
5 + u)/2, where u = Fj−1 + Fj+1.

This follows when we recall thatφ + 1/φ =
√

5.

It should be emphasised that this expression allows us to makej the subject of our
relationship and thus we can obtain the exponent ofφ given any two consecutive Fibonacci
numbers. That is

j = logφ(Fj

√
5 + u)/2.

Now using formula (C) as a basis we can offera very elegant derivation of (B).To do this
we firstly note thaty = −1/φ also satisfies the basic recurrence (C), that isyj = Fjy + Fj−1

and if we subtract this from (C) we immediately obtain (B).

Perhaps the most powerful relationship from which many other identities may be estab-
lished is the following formula of J. Halton [6].

F k
mFn = (−1)krΣkCh(−1)hF h

r F k−h
r+mFn+kr+hm,
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with h ranging from0 to k.

By substituting various values fork, r, m andn Halton was able to immediately establish
95 different Fibonacci relationships!

THE FIBONACCI RABBITS

This famous problem was first presented to the world in 1202 where we find on pages123-
128 of the manuscript of Fibonacci’sLiber Abacci

“Someone placed a pair of rabbits in a certain place, enclosed on all sides by a wall,
so as to find out how many pairs of rabbits will be born there in the course of one year,
it being assumed that every month a pair of rabbits produces another pair, and that
rabbits begin to bear young two months after their own birth.

As the first pair produces issue in the first month, in this month there will be 2
pairs. Of these, one pair, namely the first one, gives birth in the following month, so
that in the second month there will be 3 pairs. Of these, 2 pairs will produce issue in
the following month, so that in the third month 2 more pairs of rabbits will be born, and
the number of pairs of rabbits in that month will reach 5; of which 3 pairs will produce
issue in the fourth month, so that the number of pairs of rabbits will then reach 8. Of
these, 5 pairs will produce a further 5 pairs, which, added to the 8 pairs, will give 13
pairs in the fifth month. Of these, 5 pairs do not produce issue in that month but the
other 8 do, so that in the sixth month 21 pairs result. Adding the 13 pairs that will be
born in the seventh month, 34 pairs are obtained: added to the 21 pairs born in the eight
month it becomes 55 pairs in that month: this, added to the 34 pairs born in the ninth
month, becomes 89 pairs: and increased again by 55 pairs which are born in the tenth
month, makes 144 pairs in that month. Adding the 89 further pairs which are born in
the eleventh month, we get 233 pairs, to which we add, lastly, the 144 pairs born in the
final month. We thus obtain 377 pairs: this is the number of pairs procreated from the
first pair by the end of one year.

A pair
1

First (Month)
2

Second
3

Third
5

Fourth
8

Fifth
13

Sixth
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21
Seventh

34
Fig.1

From [Fig.1]* we see how we arrive at it: we add to the first number the second one
i.e. 1 and 2; the second one to the third; the third to the fourth; the fourth to the fifth;
and in this way, one after another, until we add together the tenth and the eleventh
numbers (i.e. 144 and 233) and obtain the total number of rabbits (i.e. 377); and it is
possible to do this in this order for an infinite number of months.”

*Fibonacci does all calculation tables and diagrams in his margin.

Now there are two ways of looking at this problem:

The cage model

Here we consider a population made up of breeding pairs (a male and a female rabbit
born at exactly the same moment). Each pair is kept in aseparate cage.Initially we place
a single pair of new born rabbits in a cage. For the first month they are infertile and unable
to mate. After exactly one month from birth each rabbit becomes fertile and the male rabbit
immediately impregnates the female. Exactly one month later (that is two months from birth)
the female produces a litter of which a single mating pair survives with identical breeding
habits to the parents. This newborn pair is placed in a separate cage and the process repeats
itself. The rabbits may be regarded as immortal. In fact Fibonacci merely required each
rabbit to be replaced at death or when it failed to breed.

Hence in this model we consider the number ofpairs of rabbits (or thenumber of cages)
as the population. This is why we call thisthe cage model.

The harem model

We now consider the population made up entirely offemale rabbits (a harem) with the
following fecundity (fertility) and mortality characteristics. Each newborn fmeale rabbit
takes one month to mature at which stage it is impregnated by a male rabbit brought in from
outside of the harem and not included in the population of the harem. It then takes exactly
one more month to bring forth a litter which consists of a single female rabbit. Again it is
immediately impregnated by the male from outside and produces another litter one month
later. It follows that once mature, a female produces a single newborn each and every month.
Each newborn rabbit then continues with the same breeding pattern as the mother. Again
the rabbits may be regarded as immortal. This is why we call thisthe harem modeland
emphasise that we count the individual females in the population. In the model that follows
we do not predict when the male rabbit will collapse through exhaustion.

So that we can refer to either model we will simply talk about aunit ; in the cage model
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this is a breeding pair in the harem model it is a single female.

We look at our population of units at thevery beginning of the nth month and assume
that births have just taken place in the preceding instant. The population will remain in this
state for the next month until immediately after the next birth time in monthn + 1.

Let us agree to count our population in the instant immediatelyafter the birthtime in
monthn and furthermore agree to call this instanttime n.

We now classify our units into two types:new for newborn andold (mature or fertile).
Hence we defineNn as the number of newunits, On the number of old units, andTn the total
number of units; all measured at timen (that is immediately after the birth time of monthn).
Immediately we have

Tn = On + Nn. (1)

Suppose we start off our population with asingle old unit (strictly speaking it should be 1
month old as we do not include any newborn) in the first month: that is at time one(n = 1).
Then at time 2 we would still have this unit as well as a single new unit. At time 3 we would
have 3 units; the original unit, another 1 month old unit and a newborn unit. In terms of our
new notation

T1 = O1 = 1, N1 = 0 ; O2 = N2 = 1 , T2 = 2 ; O3 = 2 , N3 = 1 , T3 = 3.

Now we try to discover some transition rules. Firstly we note that the number of new units
at time n is the same as the number of old units atn− 1: that is each old unit one month ago
will give birth now, even though one month ago it may only have just become mature. In
the harem model this is equivalent to assuming that the outside male impregnated each and
every one of the old females immediately after the birth time one month ago.

Hence
Nn = On−1 (2)

Also the old at timen− 1 are still old atn and the new atn− 1 become old atn and thus it
follows that

On = On−1 + Nn−1 = Tn−1. (3)

(3) into (2) gives
Nn = On−1 = Tn−2. (4)

We have now shown that: the new are equal to the old in the previous month; the old are
equal to the total in the previous month; the new are equal to the total two months ago.

Substituting (2) into (3) we have

On = On−1 + On−2, (5)

wheren ≥ 3 and O1 = O2 = 1.
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This is theFibonacci recurrence and thus with these initial conditions we have the
sequence 1, 1, 2, 3, 5,. . for old units, which is what is usually regarded asthe Fibonacci
sequence. That is

On = Fn. (6)

Adding (2) and (3) we also obtain the Fibonacci recurrence for the total units, from which,
with the above initial conditions we obtain

Tn+1 = Tn + Tn−1, (7)

wheren ≥ 3 andT1 = 1, T2 = 2.

From this we generate the sequence 1, 2, 3, 5, . . . Hence

Tn = Fn+1. (8)

The sequence for the new follows immediately from these two

Nn+1 = Nn + Nn−1, (9)

wheren ≥ 2 andN1 = 0, N2 = 1. Hence the new sequence is 0, 1, 1, 2, 3, 5, . . . from
whichNn = Fn−1 with F0 = 0.

On the other hand if westarted off the population with anew unit instead of an old unit
we would still have the same basic recurrences (5), (7), (9) with the slightly modified initial
conditionsO1 = 0, O2 = 1, T1 = 1, T2 = 2, from whichN1 = 1, N2 = 0. Consequently
our modified sequences are the original sequences with an extra first term added in each case
as follows. The old becomes 0, 1, 1, 2, 3, 5, . . andOn = Fn−1. The total becomes 1, 1, 2,
3, 5, . . andTn = Fn. And the new becomes 1, 0, 1, 1, 2, 3, 5, . . from whichNn = Fn−2

with F−1 = 1. Although the sequence for the new starts off in a slightly different way from
the standard Fibonacci it soon settles down to this pattern.

We summarise the above relationships in the following:
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TABLE 1

RABBIT POPULATION AGAINST TIME (n)

OLD = start with 1 old, NEW = start with 1 new

OLD NEW
Time N O T Total New Time N O T Fn
(h) Born upto n (n)
1 0 1 1 0 1 1 0 1 1
2 1 1 2 1 2 0 1 1 1
3 1 2 3 2 3 1 1 2 2
4 2 3 5 4 4 1 2 3 3
5 3 5 8 7 5 2 3 5 5
6 5 8 13 12 6 3 5 8 8
7 8 13 21 20 7 5 8 13 13
8 13 21 34 33 8 8 13 21 21
9 21 34 55 54 9 13 21 34 34
10 34 55 89 88 10 21 34 55 55
11 55 89 144 143 11 34 55 89 89
12 89 144 233 232 12 55 89 144 144

Let us now return to our model where we start with one old unit and do some more
accounting. This time we count the total number of new units (that is newborn) up to and
including timen, then this total plus the single initial old unit must be equal to the total
number of units at timen.

1 +
n∑

j=1

Nj = Tn = Fn+1

But as we haveF0 = 0,

1 +
n∑

j=2

Fj−1 = 1 +
n−1∑

i=1

Fi = Fn+1

This confirms P1O which states that the firstk Fibonacci numbers is one less thanFk+2.

The Numbers in Each Generation

The following is based on the article by Rose reference [7]. Suppose we defineS(n, k) as
the number of kth generation units attime n. By this we mean the following. Let usstart our
population with a single new unit at timen = 1. We will call this thezeroth generationand
this generation is never added to but ages continuously. Any direct offspring from this unit
we will call first generation and note that they will be produced at times 3, 4, 5 . . . Any direct
offspring from these first generation old units will be called second generation and produced
at times 5, 6, 7, . . . and so on. HenceS(1, 0) = 1. At time 2 there is no change, at time 3
the first birth takes place and it follows thatS(3, 0) = S(3, 1) = 1, that is one first generation
and our original zeroth generation. At time 4,S(4, 0) = 1, S(4, 1) = 2,. At time 5 we have
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our first second second generation unit and henceS(5, 0) = 1, S(5, 1) = 3, S(5, 2) = 1.
From such considerations we derive the followingTransition rules - Fork greater than zero
the number ofkth generation units at the end of the nth month may be considered as made up
of two components: those units that werekth generation in monthn− 1 and those units that
were born from ak− 1th generation parent. The first component is simplyS(n− 1, k). The
second component isS(n − 2, k − 1) as only the contribution from thek − 1th generation
alive 2 months ago will give birth tokth generation progeny now at timen. Consequently
we have established the recurrence relationship

S(n, k) = S(n− 1, k) + S(n− 2, k − 1), k > 0, n > 2, (10)

S(n, 0) = 1, n ≥ 1.

We note that time,n is what we previously called the new time and hence the subscript of
the corresponding Fibonacci number for the sum of terms. Thus with the above recurrence
and theextra initial condition, S(2, 1) = 0, we are able to generateTable 2. For example

S(8, 2) = S(7, 2) + S(6, 1),

or 10 = 6 + 4. In terms of this table we look at the third entry corresponding tok = 2 and
see that 10 is equal to the sum of the term above it in this column plus the term in the second
column in the next row above. We now show that

S(n, k) =n−k−1 Ck, (11)

satisfies (10).

A well known Pascal relationship is

n−k−1Ck =n−k−2 Ck +n−k−2 Ck−1.

Substituting forS in this formula it is seen that we have reproduced (10). Alson = 2 and
k = 0 and1 in (11) satisfies our initial conditions. Consequently (11) satisfies the recurrence
(10).
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TABLE 2 GENERATIONS

n = TIME(new) S(n, k)
1 1
2 1, 0
3 1, 1
4 1, 2
5 1, 3, 1
6 1, 4, 3
7 1, 5, 6, 1
8 1, 6, 10, 4
9 1, 7, 15, 10, 1
10 1, 8, 21, 20, 5
11 1, 9, 28, 35, 15, 1
12 1, 10, 36, 56, 35, 6
13 1, 11, 45, 84, 70, 21, 1

There is another very interesting pattern in this table. For example at time 10 the numbers
in the generations form the sequence 1, 8, 21, 20, 5. Now if we refer to the Pascal triangle
we will see that this is the sequence of entries along the diagonal rising from the unit in the
first (zeroth) column in the ninth row (counting the first row as zero). This is in accordance
with the result

[(n−1)/2]∑

k=1

n−k−1Ck = Fn.

In effect what we have shown from this analysis is that, for example referring to the
harem model, after time 10 months there is the original rabbit, there are 8 daughters of this
original rabbit, there are 21 granddaughters, 20 great granddaughters and finally 5 great great
granddaughters. However each generation except the zeroeth is spread over a wide range of
ages and many of the great great granddaughters of this original rabbit are in fact older than
some of her daughters.

Age Groups

If we ask the question - how many units are of a particular age ? The answer is very
simple. Because there are no deaths all units bornj months ago,at timen − j, are now, at
timen, of agej months. Thus if the number in this age group is calledaj , then

aj = Nn−j .

In the model where we start with one old unit this becomes

aj = Nn−j = Fn−j−1,
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Another way of looking at our Fibonacci Rabbits is to regard the lifetime of each unit
as one month. For this model we again classify our units into new and old but: an old unit
after one month dies and is replaced by two units, one old and one new; a new unit after one
month dies and is replaced by an old unit.

This model has a certain convenience when representing the problem as a tree or a
branching process.

Average Age in Months

We now ask the question - what is the average age of the rabbits? Let us be more specific
- assuming that the we started with one pair one month old in 1202, when the Fibonacci book
was released, what is the average age of the population now. Did you think that this figure
would be very large - well you are wrong - it can be shown (Fib. Q. V.26 page 418) that the
average age very quickly tends towards, well of course, the Golden section!
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** Annotation for Keplers Six-Cornered Snowflake [7]**

Well, here we are on New Years Day 1610 and Kepler is talking to his friend and
benefactor. They have had some private joke about “nothing", which we are not privy to, and
Kepler is trying to think of an appropriate gift which will be practically nothing. Firstly he
rejects Epicurus’ atoms, then small animals such as the mite. Suddenly it begins to snow and
a single flake settles on his shoulder. And so begins one of themost remarkable intellectual
meditations ever recorded!

He knows that a flake comes in several forms and that always it has six cornersbut
why this sixthness. This starts him off on considerations of space filling and close packing
in nature and we are then shown exactly how this great mind attacks this problem. His
meditation, for the first time, gives us the beginnings of a mathematical theory of the genesis
of form in nature. Kepler’s contribution to the mechanism of hexagonal symmetry in snow
was not to be replaced for three hundred years.

The book is a rather wonderful presentation based on the original Latin editionStrena
Seu de Niva Sexangula, published in Frankfort in 1611. It has been edited very creatively
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by L.L. Whyte, a self effacing Oxford scholar (who does not even include his name in the title
sheet)! and must be regarded as a model for all such translations of the classics. Firstly there
is a synopsis of the Latin text nicely summarising Kepler’s important points. Then follows
a modernised Latin text with an English translation on the opposite page (by Colin Hardie).
Then follow notes on the text. Finally there are two delightful essays quite in the character
of Kepler’s monograph. The first by J. Mason “On the Shapes of Snow Chrystals" discusses
the scientific meaning and validity of Kepler’s arguments, and their relation to the history
of chrystallography and of space filling. The second essay is by the editor and amongst
other things is concerned with Kepler’sfacultas formatrix - the formative process- which
in modern terms is a comprehensive theory of complex partially ordered systems showing
how and why they move towards equilibrium states. Whyte also shows how this process is
related to the history of philosophical and scientific ideas on the genesis of forms and gives
a summary of the problem of “sixthness" from 1611 to 1962.
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