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The past few decades have seen a steady and dramatic improvement in our ability
to forecast the weather. The Australian Bureau of Meteorology today issues seven-
day forecasts for maximum temperature that are of similar accuracy to the four-
day forecasts of 20 years ago, while modern four-day temperature forecasts are
of comparable accuracy to the earlier one-day forecasts. Similar improvement is
found for almost all forecasts — for example, the US National Hurricane Center
extended the range of its tropical cyclone track forecasts to five days in 2003, and
the verification skill scores show that these are as good as the two-day forecasts of
the early 1980s.

Many would be aware, at least anecdotally, of these improvements, and could name
improvements in satellites and computers as having played a large role. Using the
ever-growing computer power to make the best use of the data from the satellites
and other sources to produce forecasts in a timely manner remains a substantial
problem, and one where mathematics plays a large role. The aim of this issue of
maths@work is to outline one of the many areas in which mathematics is essential
to modern meteorology, namely data assimilation.

The improvement in computer guidance, or numerical weather prediction (NWP),
is illustrated in Figure 1, which shows the time series of the anomaly correlation1

scores of three-, five- and seven-day forecasts at 500 hPa (about 5.5 km altitude)
from the European Centre for Medium-Range Weather Forecasting (ECMWF) for
the Northern and Southern Hemispheres. A significant part of the recent forecast
improvements is due to improvements in the analysis algorithms, and particularly
the treatment of satellite data. The growing utility of satellite data is illustrated
by the elimination of the NWP skill difference between hemispheres in recent
years — the Northern Hemisphere, with larger land masses and population, relies
more heavily on in situ data from ground stations, balloons and aircraft, while the
Southern Hemisphere contains much larger data-void oceans, so improvements in
satellite data and its analysis have had a larger impact.

The numerical weather prediction problem falls into two parts. The prediction
side of the problem is essentially computational fluid dynamics. Regional-scale
models forecast out to 2–3 days and usually employ a finite-difference representa-
tion. Global-scale models are needed for longer forecast horizons, and use either a
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1The anomaly correlation is the correlation coefficient between the forecast and verifying anal-
ysis, both with climatology subtracted off. As a rule-of-thumb, 60% marks the threshhold of
useful skill.
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Figure 1. Anomaly correlation skill scores for the past 25 years for three-
day (top), five-day (middle) and seven-day (bottom) forecasts by the ECMWF
operational forecasting system, over the Northern (dark curves) and Southern
(lighter curves) Hemispheres. Figure courtesy of Adrian Simmons, ECMWF.

finite-difference or a spectral (spherical harmonic) representation. As with other
applications of computational fluid dynamics, it is necessary to include represen-
tations of physical processes that are not resolved by the fluid dynamics part of
the model. In the atmosphere, these parametrised processes include turbulent dif-
fusion, the fluxes of heat and water vapour to and from the underlying surface,
radiation, and latent heat release due to evaporation and condensation of water.
Accurately representing these processes is challenging. For instance, clouds come
in many shapes and sizes, consist of some mixture of (possibly supercooled) liquid
water droplets with various forms of ice, and interact strongly with radiation.

The other part of the prediction problem is finding the initial condition. Numer-
ical weather prediction is a mixed initial value/boundary value problem — the
forecast depends upon the initial atmospheric state, fixed boundary conditions
such as topography, and variable ones such as sea surface temperature. Analysing
the many disparate data sources to obtain the initial condition is known as data
assimilation.

Data assimilation

In the Southern Hemisphere, satellite data are of paramount importance, since the
large areas of ocean are nearly devoid of conventional observations. The satellite
images seen on the television news are usually at 11µm wavelength, in the infrared.
This is away from any absorption/emission lines in the atmospheric spectrum, and
known as a window channel since the satellite sees essentially black-body radia-
tion from the underlying surface or intervening cloud. In contrast, for frequen-
cies within an atmospheric absorption band, upwelling radiation from the earth’s
surface is absorbed and re-emitted as it passes through the atmosphere. The out-
going radiation near the centre of the band where the atmosphere is opaque will
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be representative of the temperature in an upper layer of the atmosphere, whereas
frequencies towards the edge of the band will be more sensitive to conditions lower
in the atmosphere. Thus by taking many measurements at closely spaced frequen-
cies across a peak in the atmospheric emission spectrum, information about the
vertical temperature structure can be acquired.

Retrieving temperature profiles from such multiple radiance measurements is dif-
ficult. The radiative transfer equation is nonlinear, and each frequency is sensitive
to a rather thick layer of the atmosphere. Mathematically, the problem is poorly
conditioned and underdetermined, so a strategy of using extra information is ben-
eficial. In fact, it is best to utilise the radiance data directly in the assimilation,
rather than inverting the radiative transfer calculation to obtain temperatures and
analysing those, as direct use implicitly utilises all the other data to help constrain
the retrieval of temperature profiles from the radiances.

So how does data assimilation work? At each analysis time, we have two sources of
information: a short-term numerical forecast from the previous analysis, and some
observations. The problem of combining these disparate sources of information is
approached by a least-squares minimisation,

J(x) = (x − xf )TB−1(x − xf ) + (H(x)− y)TR−1(H(x)− y) (1)

Here, the vector x is the analysis, xf the short-term forecast, y are the observa-
tions, and the first term on the right-hand side measures the fit of the analysis
to the short-term forecast, while the second measures the fit to the observations.
H is an operator that produces the analysis estimate of the observed values. For
observations of temperature, humidity or wind, H is just an interpolation from
the model grid, but for satellite radiance measurements, H includes a radiative
transfer calculation. The matrix R contains the variance of the random error in
all the observations2, together with the covariance of the error between all pairs
of observations. Errors in observations are mostly independent, so R is nearly
diagonal. Matrix B contains the error covariance of the short-term forecast, and
is definitely not diagonal. Firstly, if the forecast is in error at a particular loca-
tion, it is likely that similar errors apply nearby. Secondly, a forecast error in,
say, pressure, is likely to be accompanied by errors in the wind, since wind and
pressure are strongly coupled by atmospheric dynamics. Specifying B is a difficult
but important task, since a well-formulated B allows the analysis to produce dy-
namically consistent results — wind observations are used not just to analyse the
wind, but also to improve the depiction of the temperature and pressure fields.

Thus (1) is a very standard equation in statistics, that for finding the minimum
variance estimate. With further assumptions, the analysis becomes the maximum
likelihood estimate, with links to a large body of statistical theory and practice.
Atmospheric data assimilation is different to other applications of these ideas in
perhaps two ways: the enormous number of observations (currently millions per
day), and the need to deal with highly correlated errors in the background forecast.

One approach to solving (1) is to differentiate and solve directly ∇J = 0. This
approach has gradually fallen into disfavour, since it involves directly inverting

2Random observation error includes instrument error, errors in the observation operator H, and
errors due to the instrument being affected by smaller scales of atmospheric motion than are
resolved by the NWP system.
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matrices whose dimension is the number of observations, and because it essen-
tially replaces H by its first-order Taylor-series expansion, while the radiative
transfer parts of H are quite nonlinear. Nowadays, we directly minimise (1) by a
conjugate gradient algorithm or similar, called variational assimilation. Because
we solve for the full three-dimensional structure of the atmosphere simultaneously,
the specific algorithm is known as 3D-Var. Note that because observations of all
types are considered simultaneously, together with the short-term forecast, a large
amount of extra information is available to help constrain the poorly conditioned
and underdetermined inversion of the satellite radiances.

Representing B is now important on two fronts. Apart from being necessary to
produce a dynamically realistic result, B has a big influence on the conditioning of
the problem, and hence the speed with which the minimisation algorithm will con-
verge. Unfortunately, the näıve approach of calculating B in the model variables
fails miserably. In this space, B is rank deficient to within numerical accuracy
because it is representing highly correlated variables, and so direct minimisation
of (1) will fail to converge. In addition, B contains the square of the number of
model variables elements, and hence is too large to store, let alone operate on (the
inverse is not required by minimisation algorithms, but it is necessary to be able
to calculate the effect of multiplying a vector by B).

Methods for representing B typically involve the following components:
• Transform to less-correlated variables. Writing the horizontal wind velocity
(u, v) in terms of streamfunction ψ and velocity potential χ via

u = −∂ψ

∂y
+
∂χ

∂x
(2)

v =
∂ψ

∂x
+
∂χ

∂y
(3)

is helpful since forecast errors in ψ and χ are more isotropic and less cross-
correlated than those in u and v. Similarly, there are quite accurate approxi-
mate balance relationships between ψ and the atmospheric pressure field, so
replacing pressure by the residual unbalanced pressure eliminates the strong
correlation between pressure and ψ.

• Transform to spectral space. Either a double Fourier representation (for a
limited area model) or spherical harmonics (for a global model) are used
in the horizontal. The vertical transformation may use empirical modes of
some type, such as the leading eigenvectors of a covariance matrix calculated
from a large sample of atmospheric columns. The variable transformations,
and horizontal and vertical transformations, together make meteorologically
reasonable parameterisations of B diagonal, giving the ultimate in good con-
ditioning and computational efficiency. In fact, in variational assimilation, B
is never defined in physical space, but rather in the transformed space.

• Truncate the small scales. The errors in the background forecast are known to
be correlated over length scales of a few hundred kilometres or more. Equiv-
alently, the error spectrum is red, with little power at small scales. Thus a
lot of computer power can be saved by simply truncating B at some suitable
scale, especially early in the iterative minimisation.

In practice, it is usual to replace (1) by the incremental formulation,

J(δx) = δxTB−1δx+ (H(xf ) +Hδx − y)TR−1(H(xf ) +Hδx − y) (4)
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where δx = x − xf and H is the Jacobian of H. Here, the analysis estimate of
the observation H(x) has been replaced by a first-order Taylor-series expansion
H(xf ) +Hδx, which facilitates the truncation of the small scales in B since δx
is only required at the reduced resolution. Note that this formulation does not
involve extra coding, since calculating ∇J from (1) already required H. A further
refinement is to update the linearisation once or twice during the minimisation by
replacing H(xf ) with the current best estimate H(xf + δxn).

A matter of time

So far we have implicitly assumed that all the data occur at the analysis time.
In practice, assimilation is usually done four times a day and all data in a six-
hour window is assumed to occur at the middle of that window. This introduces
some errors — weather systems move and develop! These errors can be reduced
by assimilating more frequently, but that has its own problems. A better way is
to introduce the time dimension into the assimilation, so-called four-dimensional
variational assimilation (4D-Var). Suppose we have observations at two times
(Fig. 2). The black curves show the state trajectory with independent 3D-Var
assimilation at each time. But suppose we could use the observation y2 at time t2
to adjust the state at t1 in such a way that a forecast from t1 to t2 is now closer
to the observation? We add another term to the cost function

J(x) = · · ·+ (H2(M(x))− y2)
TR−1

2 (H2(M(x))− y2) (5)

where M is the model forecast from t1 to t2 and the subscripts 2 refer to the
time t2. Now the gradient ∇J , needed for the minimisation, has an additional
term

∇J = · · ·+ 2M TH T
2 R−1

2 (H2(M(x))− y2) (6)

V
al

ue

t1

Time

t2

Figure 2. Schematic assimilation with two observation times. The 3D-Var
assimilation is in black, with the curves representing the short-term forecast
between analysis times. The analysis (open black circle) simultaneously min-
imises the sum of squared distances from the observation (filled dark-grey circle)
and the short-term forecast (filled black circle). 4D-Var assimilation is in light
grey. The analysed value at t1 is close to the short-term forecast and observation
at t1, and initialises a forecast that is close to the observation at t2.
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that, by the chain rule of differentiation, contains the adjoint of the Jacobian of
the observation operator, H T

2 , and the adjoint of the Jacobian of the model, M
T.

H T
2 takes information about the degree of misfit from radiance space back to anal-

ysis space, while M T propagates this misfit information backwards in time from
t2 to t1. Minimising this J will produce an analysis at time t1 that is close to
the background and observation at that time, and that initialises a (linearised)
forecast that is close to the observation at time t2. Adding additional time levels
is a straightforward extension, as is the incremental formulation.

To get 4D-Var to work on an atmospheric model in the order of 106 to 107 vari-
ables, assimilating millions of observations per day, within the limited time avail-
able under operational forecast constraints, is a major undertaking. The nonlinear
atmospheric model consists of several hundred thousand lines of code, and 4D-Var
requires the development of codes to represent operations by the Jacobian of the
model and its adjoint. The minimisation itself benefits from research into very
large optimisation problems. Even with all the computational tools in place, good
results require careful attention to estimating the necessary statistics and to qual-
ity control of the observations.

Limitations of the current 4D-Var algorithm include the limited time frame over
which the linearisation of the model is valid, and the failure to explicitly account
for random error in the model. Accounting for the second will help with the
first, and open up the possibility of performing assimilation over time windows
of the order of a week long, with (hopefully) further significant improvements in
forecast accuracy. The benefits include some theoretical links to other branches
of mathematics: it can be shown with some reasonable assumptions that such
4D-Var schemes produce identical analyses to an extended Kalman filter (EKF).
Although such a 4D-Var doesn’t give the estimate of the analysis error covariance
that the EKF does, our inability to even store this for the atmosphere means that
it is hardly a limitation.
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I have given a broad outline of one component of NWP that mathematics is having
a big impact upon. Obviously it is not the only one — mathematics has a strong
influence on the computational fluid dynamics aspects, as well as the efficient
representation of radiative transfer, turbulence and clouds. A further area is in
the growing field of probability forecasts, which require what is essentially Monte
Carlo simulation of the atmosphere. Many questions arise here, and a great deal
of work has been done on working out how best to perturb the initial conditions,
represent model uncertainty, extract the probabilistic information, communicate
it to users, and validate the forecasts. One successful approach has been to use
the linearised and adjoint models to iteratively solve the eigen-problem of finding
the most rapidly growing modes of the current atmospheric state. These unstable
modes have many uses, including as a basis for Monte Carlo initial condition
perturbations. A further promising field is in using an ensemble of background
forecasts to produce ‘errors of the day’ that is, a B which reflects the varying
accuracy of the background forecast in space and time, according to the difficulty
of forecasting today’s particular meteorological situation.
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As well as having here considered only one aspect of NWP, it is important to re-
member that NWP is only one area in which mathematics is used in meteorology.
In my career, apart from topics in data assimilation, I have worked on bound-
ary layer flows, turbulence, tropical cyclone dynamics, forecast verification and
the effects of evaporating sea-spray droplets. Mathematical tools used include
the analytical and numerical solution of differential equations, Taylor and Fourier
series expansion, linear algebra, multiple linear and nonlinear regression, Monte
Carlo simulation, statistical significance testing, and symbolic algebra software. In
my experience, many interesting problems have required several of these tools, so
a breadth of knowledge has been important. I would also encourage young mathe-
maticians that there remain many more interesting problems in meteorology upon
which mathematics will have a large impact, and that the chaotic nature of the
atmosphere and the ever-growing demand for meteorological services means that
they should never be out of either a challenge, or a job!
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