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On the rate of convergence of Wallis’ sequence

Eugen Păltănea

Abstract

Recent papers published in the Gazette deal with the asymptotic behaviour of Wallis’
sequence Wn =

∏n
k=1 4k

2/(4k2 −1). Our purpose is to interpret the well-known formula
of the rate of convergence: Wn = π/2− π/8n+ o(1/n) as n → ∞, in the language of the
sequences of definite integrals.
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Introduction

The famous Wallis’ sequence (Wn)n≥1 is defined by:

Wn =
n∏

k=1

4k2

4k2 − 1
=

π

2

∫ π/2
0 sin2n+1 x dx∫ π/2
0 sin2n x dx

, n ≥ 1.

As shown by Hirshhorn [1], and earlier by Vernescu [8],

Wn =
π

2
− π

8n
+ o

(
1
n

)
as n → ∞.

In this paper, using the integral expression of Wn, we show that the limit

lim
n→∞ n

(
π

2
− Wn

)
=

π

8
(1)

follows from general properties of some sequences of definite integrals.

Basic results on the convergence of some sequences of definite integrals

We shall investigate the asymptotic behavior of the sequence of integrals In =
∫ b

a
fn(x) dx,

n ∈ N, where f : [a, b] → R is an integrable function. The following elementary theorem
(see [5] for the proof) refers to the convergence of the sequence (In+1/In)n≥1.

Theorem 1. Let f : [a, b] → R+ be a positive continuous function with ‖f‖ = maxx∈[a,b] f(x).
Let us denote In =

∫ b

a
fn(x) dx, n ∈ N. Then (In+1/In)n≥1 is an increasing sequence with:

lim
n→∞

In+1

In
= ‖f‖.

The fact that the sequence (In+1/In)n≥1 is monotonic increasing is a consequence of Bun-
yakovsky’s inequality.
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Now let us discuss the special case when f reaches its maximum ‖f‖ in a unique point. We
begin with the following useful statement.

Lemma 1. Let f : [a, b] → R+ be a positive continuous function with the property that there
is a unique point c ∈ [a, b] such that ‖f‖ = f(c). Also let g : [a, b] → R be a continuous
function. Then the sequence:

xn =

∫ b

a
fn+1(x)g(x) dx∫ b

a
fn(x) dx

, n ≥ 1

converges to ‖f‖g(c).

Proof. Let us choose an arbitrary ε > 0. Since f and g are continuous at c it follows that
there is [u, v] ⊂ [a, b], with u < v and c ∈ [u, v], such that

|f(x)g(x) − f(c)g(c)| <
ε

2
, for all x ∈ [u, v].

Let us denote m := max{f(x) | x ∈ [a, b]\[u, v]}. By the assumed uniqueness of the maximum
point c we have m < ‖f‖ = f(c). From the continuity of f at c, for a fixed m1 ∈ (m, ‖f‖)
there exists an interval [s, t] ⊂ [a, b], with s < t, such that f(x) ≥ m1, for all x ∈ [s, t]. Also,
since (m/m1)n → 0, there is nε ∈ N such that 2A(b − a)/(t − s)(m/m1)n < ε/2, for all
n ≥ nε, where A := maxx∈[a,b] |f(x)g(x)|. Hence, for any n ≥ nε, we have:

|xn − f(c)g(c)| ≤
∫ b

a
fn(x)|f(x)g(x) − f(c)g(c)| dx∫ b

a
fn(x) dx

=

∫
[a,b]\[u,v] f

n(x)|f(x)g(x) − f(c)g(c)| dx∫ b

a
fn(x) dx

+

∫ v

u
fn(x)|f(x)g(x) − f(c)g(c)| dx∫ b

a
fn(x) dx

≤
2A

∫
[a,b]\[u,v] f

n(x) dx∫ t

s
fn(x) dx

+
ε

2

∫ v

u
fn(x) dx∫ b

a
fn(x) dx

≤ 2A
b − a

t − s

(
m

m1

)n

+
ε

2
< ε.

This shows that limn→∞ xn = f(c)g(c) = ‖f‖g(c).

Below we present a deduction of the rate of convergence of the sequence (In+1/In)n≥1 for
twice-differentiable functions with continuous second derivatives.

Theorem 2. Let f : [a, b] → R+ be a positive twice-differentiable function with continuous
second derivative. Assume that f ′(x) > 0, for all x ∈ [a, b) and f ′′(b) = 0. Then the
sequence

yn = n

(
f(b) −

∫ b

a
fn+1(x) dx∫ b

a
fn(x) dx

)
, n ≥ 1
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is convergent and we have:

lim
n→∞ yn =




f(b), if f ′(b) = 0,

f(b)
2

, if f ′(b) = 0.

Proof. It is obvious that b is the unique maximum point of the function f . We have

lim
x→b−

f(x) − f(b)
f ′(x)

= 0

(since f ′′(b) = 0 we use l’Hôpital’s rule when f ′(b) = 0). Thus, the function g : [a, b] → R

defined as

g(x) =




f(x) − f(b)
f ′(x)

, x ∈ [a, b),

0, x = b,

is continuous. Also, we obtain

lim
x→b−

f(x) − f(b)
(f ′(x))2

=



0, f ′(b) = 0,

1
2f ′′(b)

, f ′(b) = 0.

It follows that g is differentiable with continuous derivative on [a, b] and we have

g′(b) = lim
x→b−

g′(x) =

{
1, f ′(b) = 0,
1
2 , f ′(b) = 0.

Therefore, using the method of integration by parts, we can write

(n + 1)
∫ b

a

fn(x)
(
f(b) − f(x)

)
dx = −(n + 1)

∫ b

a

fn(x)f ′(x)g(x) dx

= −fn+1(x)g(x)
∣∣b
a
+

∫ b

a

fn+1(x)g′(x) dx.

Thus, we obtain

yn =
n

n + 1

(
fn+1(a)g(a)∫ b

a
fn(x) dx

+

∫ b

a
fn+1(x)g′(x) dx∫ b

a
fn(x) dx

)
.

Let us choose c ∈ (a, b). Since f is increasing on [a, b], f(x) ≥ f(c), for all x ∈ [c, b] and
f(a)/f(c) ∈ [0, 1). From the obvious inequalities

0 ≤ fn(a)∫ b

a
fn(x) dx

<
fn(a)∫ b

c
fn(x) dx

<
1

b − c

(
f(a)
f(c)

)n

we get limn→∞ fn(a)/(
∫ b

a
fn(x) dx). Further, using Lemma 1, we find

lim
n→∞

∫ b

a
fn+1(x)g′(x) dx∫ b

a
fn(x) dx

= f(b)g′(b).
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Hence, the sequence (yn) is convergent with:

lim
n→∞ yn = f(b)g′(b) =




f(b), f ′(b) = 0,

f(b)
2

, f ′(b) = 0.

We have thus proved the theorem.

Computing the rate of convergence of Wallis’ sequence

Let us consider the function f : [0, π/2] → [0, 1], f(x) = sinx and the sequence of Riemann
integrals

In =
∫ π/2

0
fn(x) dx, for n ≥ 1.

We shall begin with a method (see [5]) which is based on the well-known recurrence relation:

In+2 =
n + 1
n + 2

In. (2)

By Theorem 1, we have for any positive integer n the following inequality:
I2n

I2n−1
≤ I2n+1

I2n
≤ I2n+2

I2n+1
.

Hence, from (2) we obtain:

2n
2n + 1

=
I2n+1

I2n−1
≤

(
I2n+1

I2n

)2

≤ I2n+2

I2n
=

2n + 1
2n + 2

.

Therefore we find:
π

2

√
2n

2n + 1
≤ Wn ≤ π

2

√
2n + 1
2n + 2

.

Thus, the following inequalities arise:

π/4√
1 + 1/n(

√
1 + 1/n +

√
1 + 1/2n )

≤ n

(
π

2
− Wn

)

≤ π/4√
1 + 1/2n(1 +

√
1 + 1/2n )

, for all n ∈ N.

Consequently, limit (1) exists.

But we have not exposed a ‘general method’ because the particular recurrence relation (2)
of (In) is used in the above proof. A more instructive general method of obtaining (1) is
based entirely on Theorem 2. Thus, since f ′(x) > 0, for all x ∈ [0, π/2), f ′(π/2) = 0 and
f ′′(π/2) = 0, we have:

lim
n→∞ n

(
1 − I2n+1

I2n

)
=

1
2

lim
n→∞(2n)

(
f

(
π

2

)
− I2n+1

I2n

)
=

1
2

· f(π/2)
2

=
1
4
.

If we multiply by π/2, then we obtain the limit (1).
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