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A dense distance 1 excluding set in R
3

M.S. Payne∗ and D. Coulson∗ ∗∗

Abstract

The study of the chromatic number of Euclidean space leads to the question of the max-
imum overall density that a single distance 1 excluding set can attain. In 1967 Croft
presented a construction of what is still the densest known distance excluding set in R2.
In this paper an analogous construction for R3 is presented which is the densest known
distance excluding set in R3. A general approach for Rn is also discussed. The im-
plications of the possibility that this is the densest set (or close to it) are discussed,
particularly with regards to the lower bound for the chromatic number of R3 using mea-
surable colourings.

Introduction
The chromatic number χ(Rn) of Euclidean n-space is the minimum number of colours re-
quired to colour each point of the space such that no two points that are distance 1 apart
receive the same colour. (We say the colouring excludes distance 1.)

The only known value is χ(R1) = 2 as can be seen by R =
⋃

n∈Z
[n, n+1) with the colouring

colour(x) =

{
0 
x� is odd,
1 
x� is even,

where 
x� is the greatest integer ≤ x.

For other values of n only upper and lower bounds are known. The type of colouring can
be restricted (e.g. to measurable sets (χm) or polygon tilings, etc.) and in many cases the
lower bound can be improved under these restrictions [9], [13].

A related question is that of the greatest density ρ that a single colour can have in the
space and be distance 1 excluding [12]. This question is of course restricted to colouring by
measurable sets. Clearly χm ≥ ρ−1. The set constructed in this paper gives a new lower
bound for ρ(R3).

A summary of some of the known bounds on χ, χm and ρ in low dimensions is given in
Table 1.

The densest known set in R
2 was constructed by Croft [3] and is depicted in Figure 1.

It consists of a figure that is the intersection of a hexagon and a circle of slightly smaller
diameter placed on the points of the equilateral triangle lattice. In other words, the figure
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Table 1.

R
2 χ ≥ 4 [1] χm ≥ 5 [4] ρ ≤ 12

43
[11] χ ≤ 7(1)

R
3 χ ≥ 6 [6] χm ≥ 6 [4] ρ ≤ 7

37
[10] χ ≤ 15 [2]

R
4 χ ≥ 6 [1] χm ≥ 7 [4] ρ ≤ 4

23
[5] χ ≤ 49(2)

(1)Demonstrated by a well known colouring based on regular hexagons.
(2)Demonstrated by a lattice/sublattice colouring in R4.

is a circle with six chords cutting off six equal segments. It is not difficult to confirm that in
the optimal configuration the chords subtend an angle of 0.5266 (a transcendental multiple
of π) radians at the centre and the density achieved is 0.2294 (thus ρ(R2) ≥0.2294).

Heuristically we may imagine the process that leads to this construction as follows:

(1) Centre open circles of small radius on points distance 2 apart, arranged according to
the equilateral triangle lattice.

(2) Increase their radius uniformly. We may do this until the circles have radius 1
2 at which

time 1 is the unique excluded distance.
(3) Continue to increase the area of the ‘circles’ by expanding towards the centres of the

triangles but drawing the circle in from neighbouring circles in order to maintain an
excluded distance.

The process is illustrated in Figure 1.

�r

r' = r + �r
r

�r

small radius radius expanding/drawing-in1
2

Figure 1. Top: the ‘circle expansion’ process with resultant hexagonal
dice. Bottom: local change in a die with a change in the radius of the
curved arcs, r (the ‘curved’ section of perimeter is dashed). The change
in area will be (straight perimeter−curved perimeter)×�r+O((�r)2).
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Figure 2. The Rhombic Dodecahedral Die of diameter 2rs, (RDD(rs)) is the inter-
section of a sphere of radius rs, S(rs) and scaled rhombic dodecahedron (1 − rs)V.

We call the figures formed by this process ‘hexagonal dice’. A neat way to characterise the
dimensions of the hexagonal die of maximal area is to note that it occurs when the lengths
of the chords and curved arcs are equal. To see this suppose that the hexagonal die has
area A. If we increase the radius of the curved arcs by �r then the chords must be drawn
in by �r to maintain an excluded distance. So

�A = (�r)× L(curved perimeter)− (�r)× L(straight perimeter) +O((�r)2),

where L( ) is length. Thus the area is maximised when the lengths are equal.

This technique for creating a dense set can be generalised to R
n and the purpose of this

paper is to present an analogous construction in R
3. The general method is to start with

the best known lattice based sphere packing for R
n. By halving the radius of the n-spheres

we can immediately produce quite a dense distance excluding set (with open spheres). The
next step is to improve on this density by ‘expanding’ towards the lattice holes and ‘drawing
in’ from the direction of neighbouring spheres. More precisely, we take the intersection
of an n-sphere and a scaled Voronoi region (nearest neighbour region) of the lattice. The
Voronoi region is a polytope with faces perpendicular to the lattice vectors. Hence the
resulting figure is an n-sphere with flat faces sheared off, somewhat resembling a many-
sided n-dimensional die. We will see below (as a check on calculations) that the equal curved
and flat surface area characterisation holds for R

3, and indeed in general Vn(die) = �r ×
(Vn−1(‘curved part’(∂(die)))− Vn−1(‘flat part’(∂(die)))) +O((�r)2) as the ‘curved part’ of
the boundary is pushed out and the ‘flat part is drawn in. Though this method can be
applied to any underlying lattice it is not possible to give a general construction explicitly
as each case depends on the packing lattice used.

The construction in R
3

The approach is to use the face centred cubic lattice FCCL1 (the best sphere packing lattice
for R

3) scaled so that distinct lattice points are at least 2 units apart, that is

FCCL = {z1(
√
2,

√
2, 0) + z2(0,

√
2,

√
2) + z3(

√
2, 0,

√
2) : zi ∈ Z}.

We centre open spheres of radius 1
2 on these lattice vectors and ‘expand’ towards holes

rs = 1
2 + � and ‘draw in’ rd = 1

2 − � from lattice vectors distance 2 away. This forms a
rhombic dodecahedral die (RDD) that has 2rs as an excluded distance. Here rs and rd are
the maximum and minimum radii of the RDD respectively.

1Also known as D3 = {v ∈ Z3 : v1 + v2 + v3 ∈ 2Z} or A3 = {w ∈ Z4 : w1 + w2 + w3 + w4 = 0}.
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rs

rd

Figure 3. The ‘caps’ cut from the sphere S(rs).

More precisely the holes of FCCL are the vertices of the Voronoi region V of FCCL and
their translates by vectors in FCCL. The Voronoi region V is a rhombic dodecahedron and is
the convex hull of its vertices

√
2{±(1, 0, 0),±(0, 1, 0),±(0, 0, 1), (± 1

2 ,± 1
2 ,± 1

2 )} with volume
4
√
2.

Maintaining 2rs as an excluded distance where 2rs is the diameter of the RDD means the
RDD is the intersection of an open sphere of radius rs and an open rdV as pictured in
Figure 2.

If 1
2 ≤ rs ≤ 4 − 2

√
3 (so the sphere is inside the edges of the rd scaled copy of V) then the

RDD will be a sphere with twelve identical circular ‘caps’ cut off by the faces of the rhombic
dodecahedron rdV. This makes the calculation of its volume quite simple since the caps are
just solids of rotation, see Figure 3.

Vcap(rs) = π

∫ rs

rd

r2
s − x2 dx

=
π

3
[4r3

s − 3rs + 1] as rs + rd = 1.

Thus (for 1
2 ≤ rs ≤ 4− 2

√
3)

VRDD(rs) = VS(rs) − 12× Vcap(rs)

=
4π
3
(9rs − 11r3

s − 3)

On the closed interval 1
2 ≤ rs ≤ 4− 2

√
3 the maximum volume of the RDD is

V ∗
RDD = VRDD(

√
3/11) =

4π
3

(
6

√
3
11

− 3
)

≈ 0.5588,

given when rs =
√
3/11.

Note also that for a rhombic dodecahedral die of (locally) maximal volume the ‘flat surface
area’ will be equal to the ‘curved surface area’ (consider as in R

2 referring to Figure 1,
an infinitesimal change in rs when volume is a local maximum). Clearly the proportion of
‘curved surface area’ to ‘flat surface area’ is a decreasing function of rs thus there is a unique
RDD giving a local maximum volume (when rs =

√
3/11) and this must be the global

maximum as VRDD(0) = VS(0) = 0, VRDD(1) = V(1−1)V = 0 and VRDD(rs) is a continuous
function of rs.
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We now verify that when rs =
√
3/11 for the RDD we have equality between ‘curved surface

area’ and ‘flat surface area’.

The surface area of the curved part of the cap is

∫ 2π

0

∫ arccos((1−rs)/rs)

0
r2
s sinφ dφ dθ = 2π(2rs − 1)rs.

Thus for rs =
√

3
11 ,

‘flat area’ = 12× π(r2
s − r2

d)

= 4πr2
s − 12× (2π(2rs − 1)rs)

= ‘curved area’.

The maximum volume for the rhombic dodecahedral die V ∗
RDD gives a density of

V ∗
RDD

(VV)
=

π

3
√
2

(
6

√
3
11

− 3
)

≈ 0.09878.

The density of the set of open spheres of radius 1
2 placed on the same lattice will be 4π/3×

32
√
2 ≈ 0.09256. Hence the density of the RDD based set is about 6.7% greater than that

of the sphere based set.

The importance of this result
The best known general lower bound for the chromatic number of n-space using measurable
sets is χm(Rn) ≥ n+ 3 as demonstrated by Falconer [4].

The hexagonal die constructed by Croft [3] in R
2 has a density between 1

4 and 1
5 . If this

were the densest possible set, and therefore no set was as dense as 1
4 , it would give a second

proof of the fact that χm(R2) is greater than or equal to 5.

The case in R
3 is considerably more interesting. Falconer’s result gives a lower bound of 6

for χm(R3), but the density of the construction presented here is between 1
10 and 1

11 (as is
that of the plain sphere based set). If this were the densest possible set in R

3 we would have
a proof that χm(R3) > 10 — quite an improvement.

Open questions
We have only considered sets based on a regular lattice, and only figures consisting of flat
faces and spherical sections. Could there not be an irregular set which achieved a greater
density? Certainly there could, but these sets are tremendously more difficult to analyse.
Clues as to whether irregular sets might offer higher densities could be sought first in the
two dimensional setting.
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