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Plane quadrilaterals

John Boris Miller∗

Abstract

The various types of plane quadrilaterals are characterized by their side and diagonal
lengths. Pantographs are described. The set of all congruence classes of quadrilaterals is
a variety of degree six in E6.

There are in Euclidean plane geometry some elegant theorems about cyclic quadrilaterals,
most of them consequences of the angle properties in circles. For example, there is Ptolemy’s
theorem1: In a cyclic quadrilateral, the product of the diagonals equals the sum of the prod-
ucts of opposite sides. For noncyclic quadrilaterals, results are not so easily come by. One
general theorem of note is Euler’s2: In any quadrilateral, the sum of the squares on the four
sides is equal to the sum of the squares on the diagonals plus four times the square on the
line joining the midpoints of the diagonals. Euclid, in The Elements, devotes no more than
passing interest in quadrilaterals which are not regular in some way, such as parallelograms.
But later geometers have of course filled this gap, so that by the end of the nineteenth
century the trigonometric properties of general quadrilaterals appear as suitable material
for school textbooks, see [2], [1]. Nevertheless the emphasis was on cyclic quadrilaterals.

Plane quadrilaterals can be classified into types as follows3 (see also Figure 1):

• convex, in which the two diagonals are internal and intersect;
• nonconvex and not selfintersecting (‘dart’), in which one diagonal is internal and one
external, the two not intersecting, the external diagonal spanning the concavity;

• selfintersecting (‘zigzag’), in which one pair of opposite sides intersect, and both diag-
onals are external to the contained area and do not intersect;

• (partially) degenerate, in which a particular two adjacent sides lie in the same line (here
there are three types as shown in Figure 1: a ‘flag’, where one vertex is an internal point
of a side and two sides overlap, a ‘triangle’, where two adjacent sides are in one straight
line but not overlapping, and a ‘bent line’, where two opposite vertices coincide);

• fully degenerate, in which the whole figure is contained in one dimension.

This classification results from the definition of a quadrilateral as a plane figure determined
by four points and four line segments, each point being an endpoint of exactly two segments
and each segment having each of its endpoints at a point. We shall not distinguish between
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1Ptolemy, Claudius, 2nd century AD. The converse also holds. See [3, pp. 225–227], where Lachlan’s proof
of the converse is also given.
2See [3, Vol. 2, pp. 401–402].
3Euclid, Book 1, contains a different classification in terms of degrees of symmetry, as squares, rhombuses,
. . . : see [3, Vol. 1, pp. 188, 189].
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congruent quadrilaterals. The term ‘convex’ will conventionally be kept for the nondegen-
erate types. There are also several other degenerate types in which not all sidelengths are
nonzero, but we will exclude these from consideration. So it is assumed hereafter that all
sidelengths (but not necessarily diagonal lengths) are positive.

convex
dart zigzag

triangle

flag bent]line

fully degenerate

Figure 1. Types of plane quadrilaterals

It is easily proved that the four sidelengths and the two diagonal lengths together deter-
mine a quadrilateral uniquely. The four sidelengths and one diagonal length determine the
quadrilateral to be one of two possibilities.

When can four given numbers be the side lengths of a quadrilateral? We find that: given
an ordered tuple (a, b, c, d) of four positive numbers, a necessary and sufficient condition for
the existence of a convex quadrilateral having those sidelengths, taken in that order, is:

each number is less than the sum of the remaining three. (1)

For these inequalities clearly hold for the side lengths of any convex quadrilateral. Con-
versely, suppose a, b, c, d satisfy (1). Then

max(a− b, b − a, c− d, d − c, 0) < min(c+ d, a+ b),

so there exists a number x in this interval. The numbers a, b, x are the sidelengths of a
nondegenerate triangle, so also are the numbers x, c, d, and these two triangles drawn back-
to-back with common side x give a convex quadrilateral, one of whose diagonals has length x.
Another solution, which is either a dart or a zigzag, results from drawing the triangles on
the same side of side x.

The condition (1) is independent of the order of the tuple, so if there exists a convex quadri-
lateral with those side lengths in one order, there exist quadrilaterals for all other orders.

It is also true but a deeper result, using the intermediate value theorem, that (1) is necessary
and sufficient for the existence of a convex cyclic quadrilateral with those sidelengths.

To see that (1) is also the appropriate condition for quadrilaterals of the other nondegenerate
types, we introduce the notion of a flexure. This is a continuous operation which preserves
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the sidelengths of the quadrilateral and their order, but changes its shape. (It cannot in
general be presented as a linear transformation of the plane in which the quadrilateral is em-
bedded. We make the notion of continuity more precise presently.) With given sidelengths,
the shape is a continuous function of an angle, say the angle between two chosen adjacent
sides, or the angle between the diagonals, or of a diagonal length. By showing when each
of the other forms can be reached from a convex form by flexing we can conclude that (1)
is sufficient for that form (it is clearly necessary). If quadrilateral Ω can be flexed to Ω′ we
write Ω ∼ Ω′.
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Figure 2. Notation for vertices and side and diagonal lengths

Therefore, let Ω be a convex quadrilateral with vertices P, Q, R, S and side lengths a, b, c, d,
with a = QR, etc. (see Figure 2, left). Suppose it is not a parallelogram: then there exists a
pair of adjacent sides whose sum of lengths is less than the sum of lengths of the other pair
of sides, say a+ b < c+ d. It can be flexed to a degenerate form which is a triangle Ω′ say,
in which the sides with lengths a and b are in the same line, meeting in the vertex R. Then
a small further flexure to move R to the interior of Ω′ is possible, giving a dart Ω′′. Thus
every quadrilateral which is not a parallelogram can be flexed to a dart.

To discuss flexure to a zigzag is less straightforward and depends upon a consideration of
cases. Suppose a > b > c > d. We can fold side b onto side a to produce a flag Ω′′′ provided
c < (a− b) + d. If

c � (a− b) + d, (2)
then we try instead folding c onto b, which is possible provided a < (b − c) + d. If

a � (b − c) + d, (3)

we try d onto c. If that does not work we try d onto a. Now the condition that all these four
folds are impossible is a set of four inequalities; but these together lead to the contradiction
d � c. Thus at least one of the folds is possible, and Ω is flexible to a flag. The case
a > b > c > d is one of 24 cases, which can be reduced to six needing separate consideration.
After discussion of these, the end conclusion is given in Lemma 1.

Lemma 1. Let Ω be a convex quadrilateral with sidelengths a, b, c, d in that order. Then Ω
can be flexed to a flag in all cases except the following, in each of which Ω is flexible to a
fully degenerate.

(i) Ω is a parallelogram.
(ii) The lengths of one pair of opposite sides are equal, and equal to the average of the

lengths of the other two sides.
(iii) The lengths of one pair of adjacent sides are equal, and the lengths of the other pair

are equal; Ω is a kite.
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Now if Ω can be flexed to a flag, then it can be flexed to a zigzag: for a small flexure of any
flag to a zigzag is clearly possible, and flexure is an equivalence relation. Thus Theorem 1
follows.

Theorem 1. The condition (1) holds for the sidelengths of any non fully-degenerate quadri-
lateral. It is a sufficient condition for the existence of a quadrilateral having those side-
lengths, in that order, in the following classes:

• C, the convex quadrilaterals,
• D ∪P, darts and parallelograms,
• Z ∪ (∼ Y), zigzags and quadrilaterals which are flexible to fully degenerates.

Here we have written C for the set of all convex quadrilaterals, D the darts, P the parallelo-
grams, Z the zigzags, andX the set consisting of all degenerates, andY the fully degenerates,
with Y ⊂ X. Later we write F for the set of all flags, T the triangular degenerates. Note
that P ⊂ (∼ Y).

Notation and topology

Given a quadrilateral Ω with sidelengths a, b, c, d in that order and diagonal lengths x, y,
where x spans sides a, b and also c, d, we call

p = (a, b, c, d;x, y)

a presentation of Ω, and write Ω = Φ(p) or sometimes Ω ≡ p. We regard two quadrilaterals
Ω,Ω′ as equivalent and write Ω ≡ Ω′ if they are congruent figures, allowing congruence to
include reversed orientation in the plane, and write Q for the set of all equivalence classes.
Note that Ω has eight presentations σjτkp with j = 0, 1, 2, 3 and k = 0, 1, where σ and τ
are the permutations

σ : (a, b, c, d;x, y) �→ (b, c, d, a; y, x) and τ : (a, b, c, d;x, y) �→ (d, c, b, a;x, y), (4)

for which σ4 = τ2 = 1, στ = τσ3, so that σ, τ are generators of a dihedral group. Thus
Ω ≡ Ω′ means Ω ≡ p, Ω′ ≡ p′ and p = σjτkp′ for some j and k. Note the convention of
listing in p the sides in order. It is necessary to introduce the notion of presentation because
no satisfactory convention exists for all quadrilaterals to say with which side a listing of
sidelengths should begin. (It is true that conventions can be invented for flags, for triangles
and for darts, but that is not enough.) Write P for the set of all presentations.

Since p is a vector in Euclidean space E4 × E2 we can use the Euclidean norm

‖Ω‖ = ‖p‖ =
√
a2 + b2 + c2 + d2 + x2 + y2 (5)

also as a function on quadrilaterals, since it is independent of the presentation. However, it
is not then a norm, since the Euclidean distance does depend upon the presentations. To
overcome this we introduce the function

D(Ω,Ω′) = min(‖p − σiτ jp′‖ : i = 0, 1, 2, 3; j = 0, 1), (6)

noting that ‖p − p′‖ = ‖λp − λp′‖ for any permutation λ, so D is independent of the
presentations used, and well defined.
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Lemma 2. D is a metric on Q.

Proof. It is clear that D is symmetric, and D(Ω,Ω′) = 0 when Ω ≡ Ω′. Suppose also Ω′′ ≡
p′′. For any h, i, j, k we have

D(Ω,Ω′′) ≤ ‖p − σhτ ip′′‖ ≤ ‖p − σjτkp′‖+ ‖σjτkp′ − σhτ ip′′‖.

Fix j, k so that the first term on the right is D(Ω,Ω′), then choose h, i so that the second
term is D(Ω′,Ω′′). This proves that D satisfies the triangle inequality. �

In the same way we can introduce the metric E(Ω,Ω′) = min(‖p − σip′‖ : i = 0, 1, 2, 3) on
Q†, the set of congruence classes where congruence is defined so as not to include reversed
orientation. In Q† the further convention can be used for convex quadrilaterals, darts and
partial degenerates that the order of listing sidelengths is clockwise, passing the inside of
the quadrilateral on the right; but no such rule is possible for zigzags.

A flexure in Q can now be defined more precisely as a path Θ = Φ ◦ φ determined by a
continuous presentation-valued function φ : [0, 1] → P such that φ(t) = (a, b, c, d;x(t), y(t))
where a, b, c and d are constants satisfying (1) and x(t), y(t) satisfy (15), (16) below.
Then D(Θ(t),Θ(t′)) is the minimum of five values ‖φ(t) − λφ(t′)‖, where λ can be any
of: the identity, σ, σ3, τσ, τσ3. Under the additional assumption that for all t the numbers
a, b, c, d, x(t), y(t) are all distinct we can show that λ must be the identity if | t− t′| is small
enough, that is, there exists δ > 0 such that

D(Θ(t),Θ(t′)) = ‖φ(t)− φ(t′)‖ =
√
[x(t)− x(t′)]2 + [y(t)− y(t′)]2 if |t − t′| < δ. (7)

This remark uses the uniform continuity of φ; see [6, Theorem 4.19, p. 91]. It asserts a
locally minimizing property of φ.

Formulae

We mention some useful formulae for Ω ≡ p = (a, b, c, d;x, y). Let θ be the (acute) angle
between the diagonals, and A the area. For convex quadrilaterals and darts the area is
defined to be the area of the connected inside of the quadrilateral; for zigzags it is the
modulus of the difference of the areas of the two bounded enclosed regions. Then in all
cases we find that

A = 1
2xy sin θ, (8)

2xy cos θ = |a2 − b2 + c2 − d2|, (9)

16A2 + (a2 − b2 + c2 − d2)2 = 4x2y2, (10)

2x2y2 = ±
√
H(a, b, x) ·H(c, d, x)− x4 + Sx2 + (a2 − b2)(c2 − d2), (11)

where S = a2 + b2 + c2 + d2 in (11), H denotes the Heron polynomial (see below), and
the sign + is to be taken if Ω is convex. The other cases are discussed presently. Proofs
of identities (8), (9), (10) and many others can be found in [2, pp. 24–32], and [5, pp. 200–
205], [1, pp. 168–176]. As a statement of a Pythagorean triple, (10) is particularly elegant.
However, there is nothing to say that A or xy is rational when the side lengths are.

The Heron functionH is the fourth degree symmetric polynomial in three variables H(a, b, c) =
− a4−b4−c4+2b2c2+2c2a2+2a2b2, which appears in the Heron formula

√
s(s− a)(s− b)(s− c)

for the area of a triangle with sides a, b, c and semiperimeter s = 1
2 (a + b + c). The area of
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the triangle is 1
4

√
H(a, b, c) (the formula is now attributed to Archimedes; see [4, p. 103]).

Now in the case of a convex quadrilateral the area is that of the union of two triangles with
common base x, so we can write

A = 1
4

√
H(a, b, x) + 1

4

√
H(c, d, x).

Then substitution in (10) and simplification leads to (11). This gives a formula for y in
terms of the other five lengths.

The equation (11) depends upon type as well as presentation. Let Ω be given, so that with
presentation p we have (11) which we rewrite as (11)p; there is also the equation

2x2y2 = ±
√
H(b, c, y) ·H(d, a, y)− y4 + Sy2 + (b2 − c2)(d2 − a2); (11)σp

but (11)σ2p and (11)τp coincide with (11)p so there are only two distinct equations. Now
the sign to be given the root term in (11)p, which is the sign of

m(p) = 2x2y2 + x4 − Sx2 − (a2 − b2)(c2 − d2), (12)

is determined by whether the area of the quadrilateral is calculated as a sum or difference
of areas. From this we arrive at the following rule for deciding the type of a quadrilateral,
given in terms of its presentation p as opposed to an identifiable figure in the plane.

Theorem 2. A quadrilateral Ω, given by one of its presentations p, is

(i) convex if m(p), m(σp) are both positive,
(ii) a dart if m(p), m(σp) are of opposite signs,
(iii) a zigzag if m(p), m(σp) are both negative,
(iv) a flag if one of m(p), m(σp) is zero and the other is negative,
(v) a triangle if one of m(p), m(σp) is zero and the other is positive,
(vi) fully degenerate if m(p) and m(σp) are both zero.

A zigzag and a dart each has a distinguished pair of sides, say the intersecting pair for a
zigzag, or the sides of the concavity for a dart. The following theorem characterizes these
distinctions, using in one case the permutation function

γ : (a, b, c, d;x, y) �→ (a, x, c, y; b, d),P → P. (13)

Theorem 3. Let Ω be the quadrilateral Φ(a, b, c, d;x, y).

(i) If Ω is a dart and m(p) < 0 (so that m(σp) > 0), then the edges of its concavity have
lengths a, b (if a+ b < c+ d) or c, d (if c+ d < a+ b).

(ii) If Ω is a zigzag (so that m(p) < 0 and m(σp) < 0), then m(γp) and m(σγp) have the
same sign; if it is negative then sides with lengths a, c intersect, if positive then sides
with lengths b, d intersect.

(iii) If Ω is a triangle or flag, one diagonal is the sum or difference respectively of two
adjacent sides, and this characterizes those features.

Proof. (ii) and (iii) follow easily from the geometry. (i) Since m(p) < 0, the two areas
1
4

√
H(a, b, x), 1

4

√
H(c, d, x) are to be subtracted in (11)p. This implies that x is the length

of the external diagonal, so a, b or c, d are the lengths of the concavity edges. The concavity
and diagonal are a triangle inside the other triangle, so the result follows from a theorem
about triangles. �
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Pantograph

If the midpoints of adjacent sides of Ω are joined in order, we get a parallelogram — the
median parallelogram of the quadrilateral. Its existence is a welcome oasis of symmetry in
an otherwise disorderly figure. The sides of the parallelogram are parallel to the diagonals
of Ω, so its angle between adjacent sides equals the angle between the diagonals of Ω, the
side lengths are half the diagonal lengths of Ω, and its area is half A (see Figure 3).

Now suppose instead that we are given an arbitrary parallelogram Λ = FGHI, with sides
of lengths f, g inclined at angle ω. Let QR be any line segment whose midpoint is F, then
construct QP, RS having midpoints I, G respectively. We find that PS has H as its mid-
point: so PQRS is a quadrilateral whose median parallelogram is Λ. Any parallelogram Λ
generates in this way a doubly infinite family Q(Λ) of quadrilaterals for each of which it is
the median. We call this family (with some abuse of terminology) the pantograph generated
by Λ. The family contains quadrilaterals of all nondegenerate types as well as triangular
and flag degenerates; all have the same diagonal lengths x = 2f, y = 2g, the diagonals be-
ing inclined at the same angle ω, have the same area, and therefore by (9) have the same
value for |a2 − b2 + c2 − d2|. (It is perhaps more appropriate to regard a pantograph as a
phenomenon in Q† rather than Q.)
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Figure 3. Quadrilaterals with their median parallelogram

If point P say traces out a figure Ψ, the other points Q, R, S trace out congruent figures,
the figures of Q and S rotated through 180 degrees but with the same orientation. Here we
see the action of a pantographic-like linkage. (More generally we can choose points F, G, H,
I not as midpoints but as points of subdivision with specified ratio ρ, and obtain copies of
Ψ with magnification ρ.)

If a and b are prescribed (subject to a+ b > 2f) there are two quadrilaterals in Q(Λ) with
those sidelengths for the sides through F and G, one of which is convex; so c and d are
determined to that extent.

Theorem 4. Let Λ be a parallelogram with sidelengths f, g and angle between the sides ω.
Let Ω be a quadrilateral with diagonal lengths 2f, 2g and angle between the diagonals ω.
Then Ω ∈ Q(Λ).

Proof. Construct Λ1, the median parallelogram of Ω. Its sidelengths are f, g and the angles
between its sides is ω. Thus Λ1 ≡ Λ, and accordingly Ω ∈ Q(Λ) since Ω ∈ Q(Λ1). (Recall
that we identify congruent figures.) �
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Corollary 1. Given the parallelogram Λ as above, a quadrilateral Ω ≡ (a, b, c, d;x, y) belongs
to Q(Λ) if and only if

|a2 − b2 + c2 − d2| = 8fg cosω, x = 2f, y = 2g. (14)

The space Q

We now give a geometric description of the space Q, treating a, b, c, d, x, y as coordinates
in E6 = E4 × E2, and start with P, the space of presentations. P is contained in the first
26-ant of E6; the inequalities such as a < b+c+d describe open half-spaces, so condition (1)
confines P to a subset of an open wedge with edge-face the xy-plane and bounded by four
primes. The conditions

max(|a− b|, |c− d|) ≤ x ≤ min(a+ b, c+ d), (15)

max(|b − c|, |d − a|) ≤ y ≤ min(b+ c, d+ a), (16)

which clearly must hold, describe the intersection of 12 further half-spaces. Altogether P is
in the region bounded by 6+4+12 = 22 primes. From these we can drop x = 0, y = 0 since
these boundaries are implied by (15), (16), and thus count 20 primes. This set is mapped
onto itself by each of σ and τ . Condition (11), when cleared of the root sign and simplified,
shows that P is the variety V whose equation is

x2y4 +B(x)y2 + C(x) = 0, (17)

where
B(x) = x4 − (a2 + b2 + c2 + d2)x2 − (a2 − b2)(c2 − d2), (18)

C(x) = (b2 − c2)(a2 − d2)x2 + (a2c2 − b2d2)(a2 − b2 + c2 − d2), (19)
and is contained also in the variety Vσ got by applying σ to the equation for V. Note that the
equation is invariant under τ . Thus P is the set obtained by intersecting the 20 half-spaces
mentioned above with V, which is also their intersection with Vσ.

We now impose upon P the equivalence relation ≡ where p ≡ q if p = σjτkq for some
j = 0, 1, 2, 3; k = 0, 1. Q is defined to be the set of equivalence classes P/≡, with the metric
topology induced by D. We leave it to the reader to verify Theorem 5.

Theorem 5. The projection map π : P → P/≡ (which coincides with the map Φ used ear-
lier) is, with respect to the two metric topologies, both continuous and open, and therefore
the metric topology of D on Q coincides with the quotient topology5.

These are indeed serendipitous outcomes. Q consists of the four sets C, D, Z, and X. Write
C for the set π−1(C), etc. It is clear that the shape of any quadrilateral is preserved under
magnification, angles being preserved: this is the phenomenon of proportionality, and means
that sets C, D, Z, X are cones pointed at the origin.

The sets C, D and Z are open in Q, the set X is closed, and contains F and T. To prove the
first three open we can argue from the geometry, or note that since the function m in (13) is
continuous, the sets where m and m ◦ σ are of given signs are open, and invoke Theorem 2
and then the fact that π is an open map.

5See [7, Theorem 10.19, p. 62]. As a result about the projection map between metric spaces, this depends
crucially upon (i) each equivalence class being finite, and (ii) the property here invoked as ‖λp − λp′‖ =
‖p − p′‖ for all permutations λ.
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To describe the connectivity of the space, write Q∗ = Q \Y, where Y denotes as before the
set of fully degenerates.

Theorem 6. The sets C, D, Z, F, T are pathwise connected and hence connected subsets
of Q.

Proof. We show that every Ω in C can be joined to the unit square by a path in C. With Y
being the point of intersection of the diagonals of Ω, let each vertex in turn be moved to the
point on its diagonal at distance 1/

√
2 from Y. Each such movement constitutes a path in C,

and their product path is therefore a path in C joining Ω to the unit square. This shows
that C is pathwise connected. Similar proofs for the other sets can be constructed. �

We have, from Theorem 2 by similar arguments:

Theorem 7. In the space Q∗ with the relative topology,

(i) bdry(C) ∩ bdry(Z) = ∅,
(ii) F = bdry(D) ∩ bdry(Z) \ bdry(C),
(iii) T = bdry(D) ∩ bdry(C) \ bdry(Z),
(iv) Every path joining Ω ∈ Z to Ω′ ∈ C meets F; every path joining Ω ∈ Z to Ω′′ ∈ D

meets F; every path joining Ω′ ∈ C to Ω′′ ∈ D meets either F in at least two points,
or T.

By Ptolemy’s theorem and its converse, the cyclic quadrilaterals are represented by points
on the intersection of P and the quadric xy = ac + bd. This intersection is a variety of
dimension 4, degree 12.

For a given parallelogram Λ ≡ (f, g, f, g; angleω), the pantographQ(Λ) is given by the inter-
section of P and the hypersurface (14), which is of dimension 3, degree 4. This intersection
is thus of dimension 2, a surface of degree 12. The cyclic quadrilaterals in the pantograph
therefore constitute a curve in E6 of degree 24. It is a matter for further investigation, to
discover how much of this curve is real, and whether the implied complexity is in fact a
consequence of the representation.
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