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How to multiply and divide triangles

Maurice Craig∗

Introduction

‘Rational’ trigonometry [4] invokes a novel vocabulary. New words promote con-
cepts that, although easily expressible in Euclidean terms, arguably simplify the
subject. Thus Pythagoras’ Theorem, expressed in ‘quadrances’ (squared lengths),
reduces to a linear equation.

Pedagogical debate need not inhibit other inquiry. Here I relate triangles, whose
sides have integral quadrances, to positive binary quadratic forms with integer
coefficients. Geometry makes no special study of triangles with commensurate
sides, nor do some of the simplest triangles (e.g. the right-angled isosceles) fit
that type. But there is an extensive theory of integral quadratic forms and hence,
implicitly, of triangles with integer quadrances.

Section 2 recalls basic notions about quadratic forms, while Section 3 sets up their
correspondence with triangles. The fourth section then examines the trigonometric
counterpart of composition identities.

Quadratic forms

A real binary quadratic form is an expression f(x, y) = ax2 + bxy + cy2. Com-
pleting the square shows that f(x, y) is positive definite if, and only if, the leading
coefficient a > 0 and the discriminant b2 − 4ac = −d < 0.

Number theory considers forms whose coefficients a, b, c and variables x, y are in-
tegers. Suppose g(x, y) = f(αx + βy, γx + δy), where α, β, γ, δ are integers with
αδ−βγ = ±1. We say f and g are equivalent, properly or improperly according as
the sign is plus or minus. Properly equivalent forms make up a proper equivalence
class (or simply a class) of forms.

The contraction (a, b, c) is often used. Thus, we can remark that (1, 0, 2) and
(2, 0, 1) are mutually equivalent, both properly and improperly, although verifica-
tion might mean restoring the suppressed variables. Every form considered below
is positive, and hence [3, Section 92] properly equivalent to a reduced form: one
with |b| ≤ a ≤ c. This reduced form is unique if, when |b| = a or a = c, we require
further that b ≥ 0. (Caution: [2], [3] treat forms (a, 2b, c).)
Several different (and hence properly inequivalent) reduced forms can have the
same d. For instance, the reduced forms with d = 23 are (1, 1, 6), (2, 1, 3) and
(2,−1, 3). Accordingly, three classes comprise forms with discriminant (−23).
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Classes dominate the theory of Diophantine equations f(x, y) = M . Equivalent
forms take the same values for integer x and y, so the equations for a whole class
can be treated together. (See also [3, Section 86(ii)].) Moreover, solutions for com-
posite M are built up from solutions of equations g(x, y) = N . Here, N denotes a
divisor of M , while g represents a form with the same discriminant as f , though
not necessarily in the same class.

This reduction, from M to N , depends on composition of forms. For a compre-
hensive treatment, see [1], [2], and especially [3, Section 111]. The basic rule for
performing composition reads

(a, b, Ac)(A, b, ac) = (aA, b, c).

Thus the compound of two forms, respectively representing a and A, will itself
represent the product aA. All three forms in this shorthand equation have the
same central coefficient b, and the same discriminant b2 − 4aAc = −D. Rewritten
with the variables restored, the result is F (x, y)G(s, t) = H(X,Y ), where X =
xs − cyt, Y = axt+Ays+ byt and F (x, y) = ax2 + bxy +Acy2 etc.

Example 1. The composite of (2, 1, 3) with (2,−1, 3) is (1, 1, 6). For, (2,−1, 3) is
properly equivalent to (3, 1, 2), so the formula produces (6, 1, 1), in the same class
as (1, 1, 6). More generally, (a, b, c)(c, b, a) is a principal form, representing unity.
To ‘divide’ by (a, b, c) is to multiply by (c, b, a), in its ‘reciprocal’ class.

Forms and triangles

Let U, V,W and u, v, w be the angles and respective opposite sides of a triangle.
The connection with forms flows from the cosine rule w2 = u2 + v2 − 2uv cosW ,
reformulated in [4] as the ‘cross law’. Thus, after rearrangement, squaring and use
of the Pythagorean identity relating sine and cosine, we arrive at

(u2 + v2 − w2)2 − 4u2v2 = −(2uv sinW )2.
Consequently, (u2, u2 + v2 − w2, v2) is a positive definite (real) binary quadratic
form. Our main result reformulates this finding more exactly.

Proposition 1. The (row–vector) mapping [a, b, c] �→ [p, q, r] = [a, c, a − b + c]
defines a 3-to-1 correspondence between positive definite integral forms (a, b, c) and
triangles whose sides, taken anti-clockwise, have integer quadrances p, q, r.

Proof. We have r = f(1,−1) > 0. Moreover (with b2 − 4ac = −d),
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The first factor is positive, as are at least two others, e.g. the last two, if p =
max(p, q, r). So all factors are positive, ensuring that every putative side is less
than the sum of the other two.

Triangles with sides p, q, r and the same orientation are necessarily congruent.
Choosing anti-clockwise orientation as standard lets us associate, with each form
(a, b, c), a triangle — having integer quadrances — unique up to congruence.

Conversely, given a triangle T whose integer quadrances, in anti-clockwise order,
are p, q, r, by taking [a, b, c] = [p, p + q − r, q] we obtain a positive form (a, b, c)
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that maps to T , whence the mapping is surjective. Three such forms arise, de-
pending on whether a = p, q or r. (In exceptional cases the forms coalesce and
the correspondence is no longer 3-to-1.)

Example 2. The first part of the proof follows also from the stock trigonometric
formulae u = v cosW + w cosV etc.

Example 3. Let the quadrances for T satisfy p ≤ q ≤ r. If no interior angle is
obtuse then (p, p + q − r, q) is a reduced form. For p + q − r ≥ 0 (Pythagoras!).
However, the triangle with sides 3, 4, 6 gives (9,−11, 16), not a reduced form.

Composition of triangles

A further development now intervenes, annulling the ambiguity in Proposition 1.
For, the three forms (p, p + q − r, q), (q,−p + q + r, r), (r, r + p − q, p) are eas-
ily shown properly equivalent. Hence the mapping defined above, while 3-to-1
as a correspondence between forms and triangles, is potentially a 1-to-1 mapping
of classes. To realise this potential, we define triangle classes accordingly: call
triangles equivalent if their associated forms are so. Corresponding to the equal
discriminants of equivalent forms, we have equal areas (or ‘quadreas’, in rational
trigonometry) for equivalent triangles.

Composition of forms implies a law for compounding triangles. Thus, from the
triangles with quadrances {2, 3, 4} and {2, 3, 6}, Example 1 produces a further
triangle, their compound, with the same quadrea but with quadrances {1, 6, 6}.
This illustration typifies composition of two triangles with integer quadrances and
the same quadrea.

Example 4. Let R be the interior angle opposite r for (a, b, Ac). Define R′, R′′

similarly for (A, b, ac) and (aA, b, c). By the cosine rule we find R = R′ = R′′.

Instances like (1, 0, 1) and (1, 1, 1) will alert experts that integer-quadrance trian-
gles must relate somehow to the point-lattice representation of quadratic forms [2,
Section 121–124]; [3, Section 120]. The recondite properties of rational trigonome-
try’s simplest figures show, nevertheless, how thin is the divide between elementary
and advanced mathematics. Trigonometry was not meant to be easy!
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